STAR meeting, 15-16 June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.

Slides:



Advertisements
Similar presentations
1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
Advertisements

1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
10 Nov 2004Paul Dauncey1 MAPS for an ILC Si-W ECAL Paul Dauncey Imperial College London.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
Internal note A. Dorokhov, IPHC, Strasbourg, France 1 CE_18_1 (xFab xh018) Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Wojciech Dulinski Mimosa-18 (High Resolution Tracker) IPHC, 23 rue du Loess BP 28, 67037, Strasbourg Cedex 02, France Mini.
The MAPS sensor (reminder) MAPS with integrated data sparsification
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
Ultimate Design Review G. Bertolone, C. Colledani, A. Dorokhov, W. Dulinski, G. Dozière, A. Himmi, Ch. Hu-Guo, F. Morel, H. Pham, I. Valin, J. Wang, G.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Status of the Micro Vertex Detector of the CBM Experiment N. Bialas 1, N. Chon-Sen 2, G. Claus 2, C. Colledani 2, R. De Masi 2, M. Deveaux 1, D. Doering.
Device simulation of CMOS Pixel Sensors with synopsys
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
ULTIMATE Design Review Outline  STAR Pixel Sensor Evolution  MIMOSA-26 Design  ULTIMATE Design & Optimisation  Pixel, Discriminator, Auxilliary Functional.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
Status of the R&D on MAPS in Strasbourg and Frankfurt Outline: Operation principle of MAPS (a reminder) Fast readout Radiation hardness System integration.
Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) Outline: Operation principle of MAPS Radiation tolerance against ionising doses (update)
Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
IPHC-LBNL meeting 3-5 April 2008 Radiation damage in the STAR environment and performance of MAPS sensors Compilation of different test results mostly.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
A. Rivetti Villa Olmo, 7/10/2009 Lepix: monolithic detectors for particle tracking in standard very deep submicron CMOS technologies. A. RIVETTI I.N.F.N.
Overview of Activities at COMSATS Presented by: Team Leader: Hira KhanDr. Arshad S. Bhatti Sujjia Shaukat.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
COMETH*: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang ZHOU, Jérôme Baudot, Christine Hu-Guo, Yann Hu, Kimmo Jaaskelainen,
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
1 Summary of the radiation hardness studies of Frankfurt AD AD vanced MO MO nolithic S S ensors for IKF Frankfurt: Dennis Doering*, Samir Amar-Youcef,
FastPixN an ASIC for a fast neutron telescope Maciej Kachel, IPHC Strasbourg.
1 An X-ray fluorescence spectrometer using CMOS-sensors AD AD vanced MO MO nolithic S S ensors for Supported by BMBF (06FY9099I and 06FY7113I), HIC for.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
M.Winter, on behalf of IPHC (ex-IReS) Strasbourg
ADvanced MOnolithic Sensors for
The CBM sensor digitizer
Radiation tolerance of MAPS
1IPHC Strasbourg, France, 2CERN, Geneve, Suisse
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
HVCMOS Detectors – Overview
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
Beam Test Results for the CMS Forward Pixel Detector
Enhanced Lateral Drift (ELAD) sensors
R&D of CMOS pixel Shandong University
Presentation transcript:

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer A. Dorokhov a*, G. Bertolone a, J. Baudot a, A.S. Brogna a, C. Colledani a, G. Claus a, R. De Masi a, M. Deveaux b, G. Doziere a, W. Dulinski a, J.-C. Fontaine c, M. Goffe a, A. Himmi a, Ch. Hu-Guo a, K. Jaaskelainen a, M. Koziel a, F. Morel a, C. Santos a, M. Specht a, I. Valin a, G.G. Voutsinas a, F.M. Wagner d, M. Winter a a) Institut Pluridisciplinaire Hubert Curien, 23 rue du loess, BP 28, Strasbourg b) Goethe-Universitat Frankfurt am Main, Senckenberganlage 31, Frankfurt am Main c) Groupe de Recherche en Physique des Hautes Energies (GRPHE), Universite de Haute Alsace, 61, rue Albert Camus, Mulhouse, France d) Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany 85748

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 2 Contents  Monolithic active pixel sensors (MAPS): standard and new option epitaxial layer  Mimosa25 sensor prototype implemented in a high resistivity epitaxial layer, which improves radiation tolerance  Calibration, tests with 106 Ru and results for the irradiated sensors  Conclusions and perspectives

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 3 MAPS implemented in standard CMOS technology standard CMOS technology p- epitaxial layer has low resistivity ~10 cm

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 4 Particle traverses the sensing volume Red: holes Blue: electrons MAPS: charge collection

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 5 MAPS: tolerance to non-ionising radiation 1.charge collection is large (>100 ns) because of not depleted P-epi 2.non-ionising radiation create traps But: signal-to-noise ratio drops down to ~15 after fluence of the order n eq / cm 2 optimization of the pitch size, Nwell diode size optimise doping of the p-epitaxial layer...

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 6 MAPS: improving tolerance to non-ionising radiation this layer should be possible to deplete at standard CMOS voltages (<5V) the need of industry for improvement of the photo-sensing elements embedded in to CMOS chip led to replacing low resistivity (~10 cm) epitaxial layer by relatively high resistivity thin epitaxial layer (~1000 cm), and this was commercially available as an options for standard 0.6 process The technology optimisation is very expensive... but if there are some common problems has to be solved for commercial applications, one can try to use it..

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 7 TCAD Simulations: MAPS in a high resistivity epitaxial layer For comparison: standard CMOS technology, low resistivity P-epi high resistivity P-epi: size of depletion zone size is comparable to the P-epi thickness!

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 8 Mimosa25 sensor prototype in a high resistivity epitaxial layer SB RS RS or pitch size, 3 matrixes of 16 columns and 32 rows

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 9 Mimosa25: calibration with 55 Fe 5.9 keV converted to charge carriers near Nwell Diode: used to calibrate readout gain 6.5 keV temperature 20 C O

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 10 Mimosa25: measurements with 106 Ru Landau distribution m.p.v., used to evaluate the sensors for to m.i.p. temperature 20 C O

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 11 Charge collection and charge sharing comparison for non-irradiated sensors saturation -> >90 % of charge is collected is 3 pixels -> very low charge spread for depleted substrate signal in seed is doubled

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 12 Comparison of charge collection for irradiated sensors For depleted epitaxial layer the excellent charge collection maintained up to the maximum tested value of 3x10 13 n eq /cm 2 Results from test beam at CERN with pions of 120 GeV/c shows similar values (<10% of difference)

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 13 Conclusions Mimosa25 is the first charged particle tracking MAPS prototype implemented in a high resistivity epitaxial layer The sensor was calibrated and tested with m.i.p.s The signal-to-noise ratio for m.p.v. of landau distribution is about 35 for the Mimosa25 "SB " exposed to a fluence of 3x10 13 n eq / cm 2, compared to ~15 for 2x10 12 n eq / cm 2 obtained with low- resistivity epitaxial layer sensor (Mimosa15 sensor prototype) Main Conclusion: The sensors implemented in a depleted epitaxial layer have double signal-to-noise ratio for a fluence which is 15 times larger = > The limit of radiation tolerance of MAPS can be extended by 1-2 orders of magnitude, i.e. up to ~O (10 14 n eq /cm 2)

STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 14 Perspectives At the moment only 0.6 technology is commercially available, which may be not sufficient for complex circuitry integrated in MAPS -> 3D integration techniques combining different technologies provide a very attractive solution Technologies with a smaller feature size in a similar high resistivity epitaxial layer are expected to become commercially available rather soon