Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Precision Measurements in Muon Physics A Sampler of Fundmental Measurements.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut.
The CP-violation experiments NA48 at CERN Manfred Jeitler Institute of High Energy Physics of the Austrian Academy of Sciences RECFA meeting Innsbruck,
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Yingchuan Li Weak Mixing Angle and EIC INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010.
Muon g-2 experimental results & theoretical developments
F.Sanchez (UAB/IFAE)ISS Meeting, Detector Parallel Meeting. Jan 2006 Low Energy Neutrino Interactions & Near Detectors F.Sánchez Universitat Autònoma de.
K. Kumar, W. Marciano, Y. Li Electroweak physics at EIC - Summary of week 7 INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider.
Basic Measurements: What do we want to measure? Prof. Robin D. Erbacher University of California, Davis References: R. Fernow, Introduction to Experimental.
Smashing the Standard Model: Physics at the CERN LHC
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
B. Lee Roberts, Welcome and Overview – Lepton Moments June p. 1/19 Welcome to Lepton Moments 2006! B. Lee Roberts Department of Physics.
Muon capture Durham ‘05 Klaus Jungmann, May 2005 Muon capture.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
Modern Physics Introduction To examine the fundamental nuclear model To examine nuclear classification To examine nuclear fission and fusion.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
fundamental constants first basic constant in physics.
31 January 2003 NuPECC Town Meeting, January/February GSI 1 Klaus Jungmann, 31 Janur 2003 NuPECC Town Report of Fundamental Interaction.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
May CERN Physics with a Multi-MWProton Source 1 Klaus Jungmann, Physics with a Megawatt Proto Source, CERN 25 May 2004 Fundamental Symmetries and.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,
Lecture 3 16/9/2003 Recall Penning Trap orbits cylindrical coordinates: ( , ,z); B = constant along z radial (  ) and axial (z) electric.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
Precision test of bound-state QED and the fine structure constant  Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
Measuring the charged pion polarizability in the  →    −  reaction David Lawrence, JLab Rory Miskimen, UMass, Amherst Elton Smith, JLab.
B Grants-in-aid KIBAN-B (FY2014~) Magnetic Dipole Moment g-2 Electric Dipole Moment EDM Utilize high intensity.
Yasuhiro Okada (KEK) February 4, 2005 at KEK
Introduction to CERN Activities
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
G-2, EDM, COMET muon particle physics programmes at J-PARC Mu_01 Satoshi MIHARA IPNS, KEK FKPPL-FJPPL workshop, Yonesei Univ.
May-June 2006 Fundamental Symmetries & Interactions Fundamental Symmetries and Interactions 4 th block, year 2005/2006, Rijksuniversiteit Groningen K.
Yingchuan Li Electroweak physics at EIC Brookhaven National Lab Feb. 3rd 2011, BNL.
Yannis K. Semertzidis Brookhaven National Laboratory Fundamental Interactions Trento/Italy, June 2004 Theoretical and Experimental Considerations.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
March 7, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Muonium – Physics of a Most Fundamental Atom Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen Simple Atomic System Atomic.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Moller Polarimeter Q-weak: First direct measurement of the weak charge of the proton Nuruzzaman (
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
Monday, Mar. 3, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #12 Monday, Mar. 3, 2003 Dr. Jae Yu 1.Neutrino Oscillation Measurements 1.Atmospheric.
1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration and EDM Collaboration.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Weak interactions I. Radulescu Sub-atomic physics seminar October 2005 _____________________________________________ Nuclear Geophysics Division Kernfysisch.
The Past, Present and Future of Muonium Memorial Symposium in Honor of Vernon Willard Hughes Yale University, November 14-15, 2003 Klaus Jungmann Kernfysisch.
Yannis K. Semertzidis Brookhaven National Laboratory HEP Seminar SLAC, 27 April 2004 Muon g-2: Powerful Probe of Physics Beyond the SM. Present Status.
International Conference on Science and Technology for FAIR in Europe 2014 APPA Cave Instrumentation for Plasma Physics Vincent Bagnoud, GSI and Helmholtz.
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration 3 rd Joint NIPNET ION-CATCHER HITRAP Collaboration.
Introduction to Particle Physics II Sinéad Farrington 19 th February 2015.
Lecture 4 – Quantum Electrodynamics (QED)
The Standard Model T. Kawamoto The University of Tokyo FAPPS08 Les Houches September 2008.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
The bound-electron g factor in light ions
     Possibility of precise
G. Arnison et al., UA1 Collaboration
WHAT IS THE STANDARD MODEL?
Study of Strange Quark in the Nucleon with Neutrino Scattering
Particle Physics: Status and Perspectives Part 8: The Precision Frontier Manfred Jeitler SS 2018.
Presentation transcript:

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Precision Measurements in Muon Physics A Sampler of Fundmental Measurements with Muonium Prepared by Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen and delivered by B. Lee Roberts Simple Atomic System Atomic Theory Fundamental Constants Fundamental Symmetries Search for New Physics Atomic Physics at Accelerators Precision Measurements … Condensed Matter Physics Chemistry Low energy Muon Beams Muonium (M)

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 What is it ? What is it good for ? test of electromagnetic bound state theory test of electromagnetic bound state theory fundamental constants fundamental constants tests of fundamental symmetries tests of fundamental symmetries search for New Physics search for New Physics tool for condensed matter research tool for condensed matter research …… …… “Muonium is the bound state of a positive Muon and an Electron” positive Muon and an Electron” “point-like” particles “point-like” particles no (severe) strong interaction effects no (severe) strong interaction effects calculable to required accuracy calculable to required accuracy Muonium (M)

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 hydrogen-like atom but no strong interaction

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October Theorists are confident that muonium HFS Can be calculated to 10 Hz, if needed (Eides, Pachucki,…)  magnetic moment  , 

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Muonium Hyperfine Structure Solenoid   e    in SS Gated Detector MW-Resonator/Kr target Yale - Heidelberg - Los Alamos pulsed beam essential B scan freq. scan old M

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Results from LAMPF Muonium HFS Experiment measured: 12 = (35) Hz( 18 ppb) 34 = (43) Hz( 17 ppb) from Breit-Rabi equation: 12    exp = (53) Hz( 12 ppb)  theo = (520)(34)(<100) Hz (<120 ppb)  12      p = (37) (120 ppb) alternatively derived: m   m e = (24)(120 ppb)    ppb)

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 muonium and hydrogen hfs → proton structure

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004

? m mm r 0 00 K KK || K     avg a | e a e a| avg g | e g e g| e r             CPTbreakb,a μμ Invariance LorentzbreakH,d,c,b,a μν μμ ? Lepton Magnetic Anomalies in CPT and Lorentz Non-Invariant Models CPT tests Are they comparable- Which one is appropriate  Use common ground, e.g. energies Leptons in External Magnetic Field Bluhm, Kostelecky, Russell, Phys.Rev. D 57,3932 (1998) For g-2 Experiments : Dehmelt, Mittleman,Van Dyck, Schwinberg, hep-ph/ μμ qAiiD 0D μ γ 5 γ μν id ν D μ γ μν ic μν σ H 2 1 μ γ 5 γ μ b μ γ μ am μ D μ (iγ equation DIRAC violating Lorentz and CPT generic    ψ ) 2 c l m a Δω l upspin E | l downspin E l upspin E| l r l 3 4b l a ω l a ω a Δω             avg ll 2 l c l a |aa| cm ω r     μ r e r      :: muonelectron CPT CPT – Violation Lorentz Invariance Violation What is best CPT test ? New Ansatz (Kostelecky) K 0  GeV/c 2 n  GeV/c 2 p  GeV/c 2 e-  GeV/c 2 Future: Anti hydrogen  GeV/c 2 often quoted: K 0 - K 0 mass difference ( ) e - - e + g- factors (2* ) We need an interaction with a finite strength ! What about Second Generation Leptons?

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 CPT and Lorentz Invariance from Muon Experiments Muonium: new interaction below 2 * GeV Muon g-2: new interaction below 4 * GeV (CERN) 15 times better expected from BNL V.W. Hughes et al., Phys.Rev. Lett. 87, (2001)

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Present Status of Muonium Ground State Hyperfine Structure No Experimental Activities known at this time Refinement of Theory going on Refinement of Theory going one.g.  Eides, Grotch, “Three-Loop Radiative-Recoil Corrections to Hyerfine Splitting in Muonium”, Phys.Rev.D67, (2003) in Muonium”, Phys.Rev.D67, (2003)  Eidelman, Karshenboim, Shelyuto, “ Hadronic Effects in Leptonic Systems: Muonim Hyperfine Structure and Anomalous Magnetic Moment of Muon”, Muonim Hyperfine Structure and Anomalous Magnetic Moment of Muon”, Can. J. Phys. 80, 1297 (2002) Can. J. Phys. 80, 1297 (2002) …. …. Exploitation of the Atom in Condensed Matter Science Exploitation of the Atom in Condensed Matter Sciencee.g.  Ivanter et al. “On the anomalous muonium hyperfine structure in silicon” J.Phys.: Condens. Matter 15, 7419 (2003) J.Phys.: Condens. Matter 15, 7419 (2003) …. ….

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 NEVIS CHICAGO-SREL LAMPF LAMPF latest experiment Quoted Uncertainty [kHz] Year History of Muonium Ground State Hyperfine Splitting Measurements

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Future Possibilities for Muonium Ground State Hyperfine Structure LAMPF Experiment limited by STATISTICS  more MUONS needed  factor > 100 over LAMPF – pulsed > 5*10 8  + /s  factor > 100 over LAMPF – pulsed > 5*10 8  + /s below 28 MeV/c below 28 MeV/c  new ACCELERATORS  J-PARC ?  Neutrino Factory ?  Eurisol ?  GSI ?  FNAL  ……..

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 What other experiments besides the Ground State Hyperfine Structure are possible ? 1s → 2s transition

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004

Muonium 1S-2S Experiment -.25 R  1S 2S 244 nm Energy -R  0    e   kin Laser Diagnostics   Detection   in  ee Target Mirror Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004

Muonium1s-2s At RAL

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004

Results:  1s-2s = (9.1)(3.7) MHz  1s-2s = (1.4) MHz m    = (17) m e (0.8ppm) q     = [ (2.1) ] q e-  (2.2 ppb) exp theo

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Future Possibilities for Muonium 1s-2s Interval RAL Experiment limited by STATISTICS RAL Experiment limited by STATISTICS  more MUONS needed  factor > 1000 over RAL – pulsed > 5*10 8  + /s below 28 MeV/c below 28 MeV/c  would enable cw laser spectroscopy ! (precision !)  new ACCELERATORS  J-PARC ?  Neutrino Factory ?  Eurisol ?  GSI ? .....

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 QED mm mm  , , g   g-2 hadronic contribution weak contribution New Physics  + e -  HFS, n=1   QED corrections weak contribution  + e -  1S-2S m  QED corrections

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 QED mm mm  , , g   + e -  HFS, n=1  QED corrections weak contribution  + e -  1S-2S m  QED corrections  g-2 hadronic contribution weak contribution New Physics

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 a  = a m ca m c e  B = aa pp aa pp  pp - Experiment: Fundamental Constants of Interest to g-2 Theory: * need  for muon ! * hadronic and weak corrections * various experimental sources of  better 100ppb>  need constants at very moderate *  no concern for (g-2)  even with recent corrections accuracy *  a and B (  p ) measured in (g-2)  experiment * c is a defined quantity * m  (   ) is measured in muonium spectroscopy (hfs) NEW 2000 * e  is measured in muonium spectroscopy (1s -2s) NEW 1999 *  p in water known >> probe shape dependence *  3He to  p in water >> gas has no shape effect being improved

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004  Any New Effort to improve significantly on the Muon Magnetic Anomaly will need better constants ! Where should they come from, if not from Muonium Spectroscopy ?

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Muonium – Antimuonium Conversion up to Now Did first Search for Conversion Amato et al. Phys.Rev.Lett. 21, 1709 (1968) Predicted M-M Conversion Named System “Muonium” ?

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004

Present Activities concerning Muonium – Antimuonium Conversion No Experimental Activities known at this time No Experimental Activities known at this time Theory is proposing lots of models Theory is proposing lots of modelse.g.  Clark, Love “Muonium-Antimuonium Oscillations and Massive Majorana Neutrinos”, hep-ph/ hep-ph/  Gusso, Pires, Pires, Rodrigues da Silva “Minimal Model, lepton Mixing and Muonium- Antimuonium Conversion”, hep-ph/ Muonium- Antimuonium Conversion”, hep-ph/  ….

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Future Possibilities for Muonium – Antimuonium Searches PSI Experiment limited by STATISTICS  more MUONS needed  factor > 1000 over PSI – pulsed > 1*10 9  + /s  factor > 1000 over PSI – pulsed > 1*10 9  + /s below 28 MeV/c below 28 MeV/c  new ACCELERATORS  J-PARC ?  Neutrino Factory ?  Eurisol ?  GSI ?  FNAL .....

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Old Muonium for Muonium-Antimuonium Conversion ? P(M)  sin 2 [const * (G MM /G F )*t]*exp[-  *t] Background  exp(- n  *t) ; n-fold coincidence detection For G MM << G F M gains over Background P(M) / Background  t 2 * exp[+(n-1)*  *t]  Pulsed ACCELERATOR

Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004

Summary Muonium has provided information on –QED –lepton flavor conservation –fundamental constants fine-structure constant  m  /m e   /  p – proton structure At a high-flux muon facility all of these could be improved.