EENG 751 3/16/20169-1 EENG 751: Signal Processing I Class # 9 Outline Signal Flow Graph Implementation l Fundamentals l System Function l Graph Construction.

Slides:



Advertisements
Similar presentations
Notes 6.6 Fundamental Theorem of Algebra
Advertisements

DSP-CIS Chapter-5: Filter Realization
DFT properties Note: it is important to ensure that the DFTs are the same length If x1(n) and x2(n) have different lengths, the shorter sequence must be.
1 ECE734 VLSI Arrays for Digital Signal Processing Chapter 3 Parallel and Pipelined Processing.
Frame-Level Pipelined Motion Estimation Array Processor Surin Kittitornkun and Yu Hen Hu IEEE Trans. on, for Video Tech., Vol. 11, NO.2 FEB, 2001.
Chapter 8. Linear Systems with Random Inputs 1 0. Introduction 1. Linear system fundamentals 2. Random signal response of linear systems Spectral.
6.1 signal flow graph representation of linear constant- coefficient difference equations 6.2 basic structures for IIR system direct forms
Lecture 9: Structure for Discrete-Time System XILIANG LUO 2014/11 1.
Discrete-Time and System (A Review)
1 Diagramas de bloco e grafos de fluxo de sinal Estruturas de filtros IIR Projeto de filtro FIR Filtros Digitais.
Chapter 6 Digital Filter Structures
Chapter 5 Reduction of Multiple Systems Reduction of Multiple Systems.
Professor A G Constantinides 1 Signal Flow Graphs Linear Time Invariant Discrete Time Systems can be made up from the elements { Storage, Scaling, Summation.
L7: Pipelining and Parallel Processing VADA Lab..
Copyright © 2001, S. K. Mitra Digital Filter Structures The convolution sum description of an LTI discrete-time system be used, can in principle, to implement.
Husheng Li, UTK-EECS, Fall  Study how to implement the LTI discrete-time systems.  We first present the block diagram and signal flow graph. 
 Embedded Digital Signal Processing (DSP) systems  Specification with floating-point data types  Implementation in fixed-point architectures  Precision.
A Frequency-Domain Approach to polynomial-Based Interpolation and the Farrow Structure Advisor : Yung-An Kao Student : Chih-Wei Chen 2006/3/24.
Z TRANSFORM AND DFT Z Transform
LIST OF EXPERIMENTS USING TMS320C5X Study of various addressing modes of DSP using simple programming examples Sampling of input signal and display Implementation.
Automatic Evaluation of the Accuracy of Fixed-point Algorithms Daniel MENARD 1, Olivier SENTIEYS 1,2 1 LASTI, University of Rennes 1 Lannion, FRANCE 2.
Notes Over 2.1 Graphing a Linear Equation Graph the equation.
1 Digital Signal Processing. 2 Digital Signal Processing Topic 6: Filters-Introduction 1. Simple Filters 2. Ideal Filters 3. Linear Phase and FIR filter.
Digital Signal Processing
1 Lecture 4: March 13, 2007 Topic: 1. Uniform Frequency-Sampling Methods (cont.)
Structures for Discrete-Time Systems
Filtering x y.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Professor A G Constantinides 1 Discrete Fourier Transforms Consider finite duration signal Its z-tranform is Evaluate at points on z-plane as We can evaluate.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Frequency Response Response of a Sinusoid DT MA Filter Filter Design DT WMA Filter.
Fast Fourier Transforms. 2 Discrete Fourier Transform The DFT pair was given as Baseline for computational complexity: –Each DFT coefficient requires.
Structures for Discrete-Time Systems 主講人:虞台文. Content Introduction Block Diagram Representation Signal Flow Graph Basic Structure for IIR Systems Transposed.
Signals and Systems Lecture Filter Structure and Quantization Effects.
Signal Flow Graphs Lect # 06.
Eeng360 1 Chapter 2 Linear Systems Topics:  Review of Linear Systems Linear Time-Invariant Systems Impulse Response Transfer Functions Distortionless.
Algebra 1 Section 5.6 Write linear equations in standard form Recall: Forms of linear equations Standard Slope-intercept Point-slope Graph 4x – 3y = 6.
EENG 420 Digital Signal Processing Lecture 2.
Chapter 4 Structures for Discrete-Time System Introduction The block diagram representation of the difference equation Basic structures for IIR system.
1. Write the equation in standard form.
Structures for Discrete-Time Systems
Slope Intercept form. Geometry Unit 2-3, 2-4 Equations of lines Parallel and perpendicular slopes.
Given Slope & y-Intercept
Parallel and Perpendicular Lines
Lesson 3-6 Part 2 Point-Slope Equation.
Unit 3: Coordinate Geometry
EEE4176 Applications of Digital Signal Processing
Discrete-time Systems
Discrete-Time Structure
J McClellan School of Electrical and Computer Engineering
Fast Fourier Transforms Dr. Vinu Thomas
{ Storage, Scaling, Summation }
Bell work: A park’s revenue for tapes sold is modeled by the function r(x)=9.5x. The cost of producing the tapes is c(x)=0.8x Write a function.
Quick Review of LTI Systems
لجنة الهندسة الكهربائية
Lect5 A framework for digital filter design
UNIT V Linear Time Invariant Discrete-Time Systems
Z TRANSFORM AND DFT Z Transform
CS3291: "Interrogation Surprise" on Section /10/04
UNIT 5. Linear Systems with Random Inputs
x-Value = The horizontal value in an ordered pair or input Function = A relation that assigns exactly one value in the range to each.
Parallel and Perpendicular
Fundamental Theorem of Algebra
Green Filters Cascade Polyphase M-to-1 Down Sample Filter, Inner Filter, and Polyphase 1-to-M Up Sample Filter fred harris.
 = N  N matrix multiplication N = 3 matrix N = 3 matrix N = 3 matrix
Systems of Equations Solve by Graphing.
Zhongguo Liu Biomedical Engineering
Assignment # 3 Chapter 4 End of Chapter questions P-4.6 Page 97
Zhongguo Liu Biomedical Engineering
Signals and Systems Lecture 18: FIR Filters.
Presentation transcript:

EENG 751 3/16/ EENG 751: Signal Processing I Class # 9 Outline Signal Flow Graph Implementation l Fundamentals l System Function l Graph Construction l Graph Analysis l Applications l Complex Coefficient Systems

EENG 751 3/16/ SFG Reference IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993 “Efficient Computation of the DFT with Only a Subset of Input or Output Points” page 1184.

EENG 751 3/16/ SFG Reference IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993 “Efficient Computation of the DFT with Only a Subset of Input or Output Points” page 1188.

EENG 751 3/16/ SFG Fundamentals

EENG 751 3/16/ SFG Fundamentals (Cont)

EENG 751 3/16/ SFG Fundamentals (Cont)

EENG 751 3/16/ SFG Fundamentals (Cont)

EENG 751 3/16/ SFG Generation

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Generation (Cont)

EENG 751 3/16/ SFG Application Reference IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993 “Efficient Computation of the DFT with Only a Subset of Input or Output Points” page 1188.

EENG 751 3/16/ SFG Application Reference IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993 “Efficient Computation of the DFT with Only a Subset of Input or Output Points” page 1189.

EENG 751 3/16/ SFG Application Example

EENG 751 3/16/ SFG Application Example

EENG 751 3/16/ SFG Application Example

EENG 751 3/16/ SFG Application Example

EENG 751 3/16/ SFG Application Example (Cont)

EENG 751 3/16/ Alternate Canonic Forms

EENG 751 3/16/ Alternate Canonic Forms (Cont)

EENG 751 3/16/ Alternate Canonic Forms (Cont)

EENG 751 3/16/ Alternate Canonic Forms (Cont)

EENG 751 3/16/ Alternate Canonic Forms (Cont)

EENG 751 3/16/ Cascade Form

EENG 751 3/16/ Cascade Form

EENG 751 3/16/ Parallel Form

EENG 751 3/16/ Parallel Form (Cont)

EENG 751 3/16/ The Transposition Theorem

EENG 751 3/16/ The Transposition Theorem (Cont)

EENG 751 3/16/ The Transposition Theorem (Cont)

EENG 751 3/16/ FIR Filter Equations

EENG 751 3/16/ Transpose FIR Filter Equations

EENG 751 3/16/ The Transposition Theorem (Cont)

EENG 751 3/16/ FIR SFGs

EENG 751 3/16/ FIR SFGs (Cont)

EENG 751 3/16/ FIR SFGs (Cont)

EENG 751 3/16/ FIR SFGs (Cont)

EENG 751 3/16/ FIR SFGs (Cont)

EENG 751 3/16/ FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Causal Linear Phase Systems

EENG 751 3/16/ Causal Linear Phase Systems (Cont)

EENG 751 3/16/ Causal Linear Phase Systems (Cont)

EENG 751 3/16/ Causal Linear Phase Systems (Cont)

EENG 751 3/16/ Causal Linear Phase Systems (Cont)

EENG 751 3/16/ Causal Linear Phase Systems (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ Linear Phase FIR SFGs (Cont)

EENG 751 3/16/ All Pass Filters

EENG 751 3/16/ All Pass Filters (Cont)

EENG 751 3/16/ All Pass Filters (Cont)

EENG 751 3/16/ All Pass Filters (Cont)

EENG 751 3/16/ All Pass Filters (Cont)

EENG 751 3/16/ All Pass Filters (Cont) Consider the second SFG Flip it over I.e. Pull down I.e.

EENG 751 3/16/ All Pass Filters (Cont)

EENG 751 3/16/ All Pass Filters (Cont)

EENG 751 3/16/ Signal Flow Graph Example

EENG 751 3/16/ Signal Flow Graph Example (Cont)

EENG 751 3/16/ Signal Flow Graph Example (Cont)

EENG 751 3/16/ Signal Flow Graph Example (Cont)

EENG 751 3/16/ Signal Flow Graph Example (Cont)

EENG 751 3/16/ Signal Flow Graph Example (Cont)

EENG 751 3/16/ Signal Flow Graph Example (Cont)

EENG 751 3/16/ Signal Flow Graph Example (Cont)

EENG 751 3/16/ Exercise (To be Handed In)

EENG 751 3/16/ Complex Filter Example

EENG 751 3/16/ Complex Filter Example(Cont)

EENG 751 3/16/ Complex System Signal Flow Graphs

EENG 751 3/16/ Complex System SFG(Cont)

EENG 751 3/16/ Complex System Signal Flow Graphs

EENG 751 3/16/ Application from IEEE Transactions on Signal Processing, Vol 46, No.2 Feb 98 Page 364

EENG 751 3/16/ Application from IEEE Transactions on Signal Processing, Vol 46, No.2 Feb 98 Page 368

EENG 751 3/16/ Application Example (Continued)

EENG 751 3/16/ Application Example (Continued)

EENG 751 3/16/ Application Example (Continued)