William Peterson & Robert Mutel University of Iowa Miller Goss NRAO M. Gudel ETH, Zurich 1.

Slides:



Advertisements
Similar presentations
Dr Matt Burleigh The Sun and the Stars. Dr Matt Burleigh The Sun and the Stars Binary stars: Most stars are found in binary or multiple systems. Binary.
Advertisements

OH (1720 MHz) Masers: Tracers of Supernova Remnant / Molecular Cloud Interactions Crystal L. Brogan (NRAO) VLBA 10 th Anniversary Meeting June 8-12, 2003.
Radio and X-ray emission in radio-quiet quasars Katrien C. Steenbrugge, Katherine M. Blundell and Zdenka Kuncic Instituto de Astronomía, UCN Department.
Gabriele Giovannini Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia - INAF EVN observations of M87 as follow-up on a recent.
Spectral and VLBI-structure monitoring of OH-maser flare in W75N: preliminary results Alexey Alakoz & Vyacheslav Slysh Astro Space Center Moscow, Russia.
Exploring the Inner microarcseconds of AGN using the Space Interferometry Mission "SIM Lite" Ann E. Wehrle Principal Investigator, SIM AGN Key Project.
Neutron Stars and Black Holes
M87 - WalkerVSOP-2 Symposium, Sagamihara, Japan Dec IMAGING A JET BASE - PROSPECTS WITH M87 R. Craig Walker NRAO Collaborators: Chun Ly (UCLA - was.
Chapitre 3- Astrometry PHY6795O – Chapitres Choisis en Astrophysique Naines Brunes et Exoplanètes.
The Transient Universe: AY 250 Spring 2007 Sagittarius A* Geoff Bower.
Composite colliding winds (CWo - orbiting; CWc - concentric; CWb - binary) and Seaquist, Taylor and Button (STB) model of HM Sge (open circle - hot component;
(More) Evidence of Disk-Jet Connection in the Radio Galaxy 3C 120 Ritaban Chatterjee, Boston University. Radio Galaxies in the Chandra Era, July 11 th,
The Evolution of Extragalactic Radio Sources Greg Taylor (UNM), Steve Allen (KIPAC), Andy Fabian (IoA), Jeremy Sanders (IoA), Robert Dunn (IoA), Gianfranco.
The Application of Forbidden Line X-Ray Diagnostics to the Hot Star Tau Sco Author: Geneviève de Messières Swarthmore College ‘04 Advised by: David Cohen.
Variable SiO Maser Emission from V838 Mon Mark Claussen May 16, 2006 Nature of V838 Mon and its Light Echo.
The proper motion and parallax of a black hole X-ray binary James Miller-Jones Jansky Fellow NRAO Charlottesville Collaborators: Peter.
What stellar properties can be learnt from planetary transits Adriana Válio Roque da Silva CRAAM/Mackenzie.
Detection of X-ray resonant scattering in active stellar coronae Paola Testa 1,2, J.J. Drake 2, G. Peres 1, E.E. DeLuca 2 1 University of Palermo 2 Harvard-Smithsonian.
Kinematics and coronal field strength of an untwisting jet in a polar coronal hole observed by SDO/AIA H. Chen, J. Zhang, & S. Ma ILWS , Beijing.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Kagoya/Inoue Optical: Slotnick, Slotnick & Block The Black Hole Accretion Disk in NGC4258: One of Nature’s Most Beautiful Dynamical Systems Alice Argon.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
Deep, wide-field global VLBI observations of HDF-N Deep, wide-field global VLBI observations of HDF-N Seungyoup Chi Kapteyn Institute (RuG) / JIVE Collaborators.
VLBI Imaging and Astrometry of the Gravity Probe B Guide Star HR 8703 Jean-Francois Lestrade Observatoire de Paris/DEMIRM Ryan Ransom, Norbert Bartel,
Magnetic mapping of solar-type stars Pascal Petit figure: © M. Jardine.
Intraday variability of Sgr A* at radio wavelengths: A Day in the Life of Sgr A* Doug Roberts Northwestern University Adler Planetarium & Astronomy Museum.
Optical Observations of J : An LMXB in Transition Paul A. Mason New Mexico State University Emmanuel Gonzalez University of Texas at El Paso Edward.
Imaging Compact Supermassive Binary Black Holes with VLBI G. B. Taylor (UNM), C. Rodriguez (UNM), R. T. Zavala (USNO) A. B. Peck (CfA), L. K. Pollack (UCSC),
Measuring Parameters for Microlensing Planetary Systems. Scott Gaudi Matthew Penny (OSU)
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
The jet of Mrk 501 from millions of Schwarzschild radii down to a few hundreds Marcello Giroletti INAF Istituto di Radioastronomia and G. Giovannini, G.
Simultaneous optical and X-ray observations of flares and rotational modulation on the RS CVn binary HR 1099 (V711 Tau) from the MUSICOS 1998 campaign.
th EVN Symposium 1 Parallax measurements of the Mira-type star UX Cygni with phase-referencing VLBI 8th European VLBI Network Symposium.
Moscow presentation, Sept, 2007 L. Kogan National Radio Astronomy Observatory, Socorro, NM, USA EVLA, ALMA –the most important NRAO projects.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
Stars Stellar radii –Stefan-Boltzman law Measuring star masses.
No Longer! The Double Pulsar Maura McLaughlin West Virginia University 5 April 2012 Collaborators: Kramer (MPiFR), Stairs (UBC), Perera (WVU), Kim (WVU),
X-ray flare on the single giant HR 9024 David Garcia-Alvarez (CfA) David Huenemoerder (MIT) Jeremy Drake (CfA) Fabio Reale (Univ. Palermo) Paola Testa.
P-L Relation Compared with the P-L relation from Whitelock & Feast (2000) VLBI results (black) show less scatter than the Hipparcos results (red) Source.
The Radio Millisecond Pulsar PSR J : A Link to Low-Mass X-Ray Binaries Slavko Bogdanov.
Gabriele Giovannini Marcello Giroletti Gregory B. Taylor Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia, INAF Bologna Dept.
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
Binary Orbits. Orbits Binary Stellar Systems 1/3 to 2/3 of stars in binary systems Rotate around center of mass (barycenter) Period - days to years for.
RELATIVE ASTROMETRY AND PHASE REFERENCING Ed Fomalont National Radio Astronomy Observatory Charlottesville, VA USA.
Iván Agudo with the collaboration of: S.N. Molina, J. L. Gómez (IAA-CSIC) T. P. Krichbaum, A. Roy, U. Bach (MPIfR) I. Martí Vidal (Chalmers) B. Campbell.
Measuring Radii and Temperatures of Stars Definitions (again…) Direct measurement of radii – Speckle – Interferometry – Occultations – Eclipsing binaries.
Marcello Giroletti INAF Istituto di Radioastronomia and
VLBI: The telescope the size of the planet
Quasi-Periodicity in the Parsec-Scale Jet of the Quasar 3C345 - A High Resolution Study using VSOP and VLBA - In collaboration with: J.A. Zensus A. Witzel.
The Radio Evolution of the Galactic Center Magnetar Joseph Gelfand (NYUAD / CCPP) Scott Ransom (NRAO), Chryssa Kouveliotou (GWU), Mallory S.E. Roberts.
Dependence of the Integrated Faraday Rotations on Total Flux Density in Radio Sources Chen Y.J, Shen Z.-Q.
Cornelia C. Lang University of Iowa collaborators:
Mapping the U.S. Scientific Future in VLBI ftp.aoc.nrao.edu/pub/VLBIfuture VLBI Future Committee: Shep.
VLBA Observations of AU- scale HI Structures Crystal Brogan (NRAO/NAASC) W. M. Goss (NRAO), T. J. W. Lazio (NRL) SINS Meeting, Socorro, NM, May 21, 2006.
1 VLBA Orbits of Young Binary Stars Rosa M. Torres – CRyA, UNAM Laurent Loinard – CRyA, UNAM Amy Mioduszewski – DSOC, NRAO Luis F. Rodríguez – CRyA, UNAM.
Is the Inner Radio Jet of BL Lac Precessing? R. L. Mutel University of Iowa Astrophysics Seminar 17 September 2003.
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
RIPL Radio Interferometric Planet Search Geoffrey Bower UC Berkeley Collaborators: Alberto Bolatto (UMD), Eric Ford (UFL), Paul Kalas, Adam Fries, Anna.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Lecture 16 Measurement of masses of SMBHs: Sphere of influence of a SMBH Gas and stellar dynamics, maser disks Stellar proper motions Mass vs velocity.
EVN 2015: Astrometry Parallaxes of Galactic sources.
Recent Progress on a New Geometric Distance to NGC 4258
e-VLBI correlator mode: control interfaces
Radio Astrometry of Young Stars
ASTRONOMICAL DATA ANALYSIS
Towards a kinematic model of the Local Group as-Astrometry with VLBI
A VLBA MOVIE OF THE JET LAUNCH REGION IN M87
GPI Astrometric Calibration
Binary Orbits.
Compact radio jets and nuclear regions in galaxies
Presentation transcript:

William Peterson & Robert Mutel University of Iowa Miller Goss NRAO M. Gudel ETH, Zurich 1

 What is the morphology [shape, orientation, timescale] of the radio corona of Algol? ◦ Need high fidelity, high angular resolution images (i.e. HSA, 15+ GHz)  How do the radio images connect to the actual positions of the stars? ◦ Requires precise (sub-mas) astrometry and accurate orbital/astrometric parameters 2

3  Distance: 28.8 pc (93 ly)  Low Proper Motion  Algol C o A-type o 1.86 yr orbit  Algol A/B o Radio Active o 2.86 day period o Mass Ratio 4.5:1 o Separation 3.6 mas o Eclipsing! Algol A m = 3.6 M sol r = 2.9 R sol, 0.5 mas Algol B m = 0.8 M sol r = 3.5 R sol, 0.6 mas

3.6 mas

Lestrade et al Pan et al. 1993

Quiescent emission only reduced by ≈15% during secondary eclipse X-ray emitting region R >> R K, confined largely to polar caps of star? Antunes et al. (1994) 6

Schmitt & Favata (1999) Flares are entirely occulted during primary eclipse Sustained heating provides more realistic sizes for flaring regions than free decay Flaring regions are compact (H  0.6 R ∗ ) and (in general) confined to the polar regions 7 Flare modeled on disk 0.1R K

X-Ray line spectrum Doppler shift vs. Orbital phase Best fit at height R~ 3R sun Chung et al (Chandra)

 Spectral line widths - Rotational broadening?  Spectral line velocities → Orbit Radius of X-ray source is only ~70% of Algol A-B separation  X-ray emission from K sub-giant is offset toward B star

Flaring Statistical Analysis (Richards et al. 2003) Accretion Model (Richards et al. 1993)  Superhumps in lightcurves (Vogt et al. 1982)  Interaction of accretion disk with B star magnetic field 10

15 GHz VLBA + Bonn + GBT + VLA April - August 2008  3 x 12hr observations at secondary eclipse  2 x 12hr observations at 0.25 quadrature  1 x 12hr observation at 0.75 quadrature Phase reference switching time ~90s 11 Algol J J S 15 ≈700 mJy 0.9 o 2.7 o Primary phase calibrator

 K star moves ~ 1 mas (2.5 beams) in 12 hr during secondary eclipse  Motion corrected to center of observation using CLCOR (thanks to Leonid Kogan!) 12 No correctionWith correction

13

 18 epochs o BM267 (2008) o Fey et al. (2000) o BM109 (1999) o BM74 (1997) o Mutel (1998) o Lestrade at al. (1993)  For each epoch assign radio centroid position  Vary 5 astrometric parameters and minimize chi-squared value  Proper motion (R.A., Dec.), Annual Parallax, J position of Algol Barycenter (R.A. Dec. [heliocentric])  6 th parameter needed – radio offset toward B8 star! 14  Arguably the most accurate proper motion ever determined (±10 μas/yr vs. HIPPARCOS, typically ±100 μas/yr)

15 μ αcosδ = 2.69 ± mas yr -1 μ δ = ± mas yr -1

Parallax (mas)μ αcosδ (mas yr -1 )μ δ (mas yr -1 ) BM ± ± ± HIPPARCOS35.14 ± ± ± 0.88 Fey et al. (2006)N/A3.30 ± ± 0.76 R.A. (error in mas)Dec. (error in mas)α 0 -α hip δ 0 -δ hip 3:08: ±0.7140:57: ± R.A. (error in mas)Dec. (error in mas)α 0 -α fey δ 0 -δ fey 3:08: ± 2.740:57: ± Compare to HIPPARCOS Center-of-Luminosity Position (observation epoch ) Compare to Fey et al. (2006) MERLIN position of radio emission (epoch ) 16

Test Fit to Algol B vs. Algol A χ 2 = 0.7 χ 2 = 3.25 (reject ) 17

18

19

April 6, UT Phase = 0.50 S = 29.7 mJy July 27, UT Phase = 0.50 S = mJy 20

Test second active binary system: UX Ari ✓ Larger distance (50.2 pc) but longer period (6.44 days) gives a=1.67 mas (resolvable by VLBA-HSA) ✓ Similar flux density range ✓ Past phase-referenced VLBI observations (helps astrometric solution) ✓ Acceleration=> Possible third companion 21 UX Ari HSA simulation 23 GHz

22  First VLBI maps of coronal loops on another star  First sub-milliarcsecond registration of a radio position to the optical star position  The dominant feature of Algol’s magnetosphere is a large loop, oriented (in general) toward the B-type primary  Loop is anchored near the poles of the K subgiant  Consistent with X-ray observations  Gyrosynchrotron loop model fits radio morphology  Quiescent - τ=1 at feet of loop (δ≈3)  Flaring - τ=1 fills loop (δ≈1.8)  Is this feature common to active stars?