Self-organized helical equilibria in the RFX-mod reversed field pinch D. Terranova 1, A.H. Boozer 2, M. Gobbin 1, L. Marrelli 1, S.P. Hirshman 3, N. Pomphrey.

Slides:



Advertisements
Similar presentations
Statistical Properties of Broadband Magnetic Turbulence in the Reversed Field Pinch John Sarff D. Craig, L. Frassinetti 1, L. Marrelli 1, P. Martin 1,
Advertisements

Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Ideas for overseas contributions to CMSO Piero Martin Consorzio RFX Associazione Euratom-ENEA sulla fusione And Physics Dept., Univ. of Padova, Italy CMSO.
R. Cavazzana – RFX-mod programme Workshop – 21 - I Experimental Proposals Submitted to TF4 Roberto Cavazzana ● TF4 Topics ● Urtext edition of proposals.
Seminario UT FUSIONE Aula Brunelli, Centro Ricerche Frascati 8 Febbraio 2010 Ideal MHD Stability Boundaries of the PROTO-SPHERA Configuration F. Alladio,
M. Zuin RFX ws 2011 Padova, 7-9/2/2011 Innovative contributions to confinement understanding M. Zuin.
West Lake International Symposium on Plasma Simulation; April, 2012 Influence of magnetic configuration on kinetic damping of the resistive wall.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
European Ph.D. course. - Garching )p.martin Piero Martin Consorzio RFX- Associazione Euratom-ENEA sulla fusione, Padova, Italy Department of Physics,
Overview of Results in the MST Reversed-Field Pinch D. J. Den Hartog University of Wisconsin – Madison Center for Magnetic Self-Organization 20 October.
M. Zuin 14th IEA RFP workshop, Padova, April, 26-28, 2010 Alfvén eigenmodes in RFX-mod M. Zuin, S. Spagnolo, E. Martines, B. Momo, R. Cavazzana, M. Spolaore,
RFP Workshop, Stockholm 9-11 /10/ 2008 Numerical studies of particle transport mechanisms in RFX-mod low chaos regimes M.Gobbin, L.Marrelli, L.Carraro,
Villamoura 1-6 November 2004IAEA Conference Turbulent transport and plasma flow in the Reversed Field Pinch V. Antoni,R. Cavazzana, E. Martines, G. Serianni,
Progress in Configuration Development for Compact Stellarator Reactors Long-Poe Ku Princeton Plasma Physics Laboratory Aries Project Meeting, June 16-17,
8.30 – 9.10 Coffee and Registration (fee 400 Swedish crowns) Welcome Plasma wall interactions and edge physics – chairman: Brunsell P. - Hirano.
13th IEA/RFP Workshop – Stockholm October 9-11, D characterization of thermal core topology changes in controlled RFX-mod QSH states A. Alfier on.
The Stability of Internal Transport Barriers to MHD Ballooning Modes and Drift Waves: a Formalism for Low Magnetic Shear and for Velocity Shear The Stability.
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
M. Zuin 13th IEA/RFP WorkshopStockholm, October 9-11, 2008 Self-organized helical equilibria emerging at high current in RFX-mod Matteo Zuin on behalf.
N.Vianello 09 October t h IEA/RFP Workshop Current filaments and electrostatic structures measured in the edge region of the RFX-mod experiment.
S.C. Guo 13th IEA/RFP Workshop, October 9-11, 2008, Stockholm 1 Experiments and modeling on active RWM rotation in RFP plasmas S.C. Guo, M. Baruzzo, T.
RFA Experiments on the T2R RFP Open loop control experiments J.R. Drake 1), D. Gregoratto 2), T. Bolzonella 2), P.R. Brunsell 1), D. Yadikin 1), R. Paccagnella.
Fast imaging of global eigenmodes in the H-1 heliac ABSTRACT We report a study of coherent plasma instabilities in the H-1 plasma using a synchronous gated.
RFX-mod Workshop – Padova, January Experimental QSH confinement and transport Fulvio Auriemma on behalf of RFX-mod team Consorzio RFX, Euratom-ENEA.
RFX-mod 2009 programme Workshop, January 20-22, 2009 Report on experimental proposals submitted to TF1 ‘RFP performance: high current operation and advanced.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Challenges in RFP physics D.F. Escande UMR 6633 CNRS/Aix-Marseille Université, France & Consorzio RFX, Padova, Italy Thanks to D. Bonfiglio, F. Sattin,
14 th IEA-RFP Workshop, Padova 26 th -28 th April 2010 The SHEq code: an equilibrium calculation tool for SHAx states Emilio Martines, Barbara Momo Consorzio.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Stellarator tools for neoclassical transport and flow interpretation in helical RFP plasmas M. Gobbin RFX-mod Programme Workshop 2011, February 7-9, Padova,
Resonant magnetic perturbation effect on the tearing mode dynamics in EXTRAP T2R: experimental results and modeling L. Frassinetti, K.E.J. Olofsson, P.R.
European Ph.D. course. - Garching )p.martin Piero Martin Consorzio RFX- Associazione Euratom-ENEA sulla fusione, Padova, Italy Department of Physics,
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
QSH/SHAx states: towards the determination of an helical equilibrium L. Marrelli acknowledging fruitful discussions with S.Cappello, T.Bolzonella, D.Bonfiglio,
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
1Peter de Vries – ITBs and Rotational Shear – 18 February 2010 – Oxford Plasma Theory Group P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
RFP equilibrium 3. The reversed field pinch magnetic equilibrium ORNL Colloquium – September 10th, 2009.
Influence of pressure-gradient and average- shear on ballooning stability semi-analytic expression for ballooning growth rate S.R.Hudson 1, C.C.Hegna 2,
Weixing Ding University of California, Los Angeles,USA collaborators: D.L. Brower, W. Bergerson, D. Craig, D. Demers, G.Fiksel, D.J. Den Hartog, J. Reusch,
RFX-mod Programme Workshop, 20-22/01/09, Padova - T. Bolzonella1 Tommaso Bolzonella on behalf of RFX-mod team Consorzio RFX- Associazione Euratom-ENEA.
QAS Design of the DEMO Reactor
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
RFX-mod Workshop, Padova 20-22/01/ 2009 Transport in the Helical Core of the RFP M.Gobbin, G.Spizzo, L.Marrelli, L.Carraro, R.Lorenzini, D.Terranova and.
T. Bolzonella – 9 February 2011 – RFX-mod programme workshop TF1: Physics integration for high performance RFP Proposals and discussion T. Bolzonella,
Transition to helical RFP state and associated change in magnetic stochasticity in a low-aspect-ratio RFP A.Sanpei, R.Ikezoe, T. Onchi, K.Oki, T.Yamashita,
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
The Joint Meeting of 4th IAEA Technical Meeting on Spherical Tori and 14th International Workshop on Spherical TorusFrascati, 7 to 10 October Ideal.
October 2008, MPI fϋr Plasmaphysik, Garching 1 Performance limiting MHD phenomena in fusion devices: physics and active control M. Baruzzo Consorzio RFX,
Plasma MHD Activity Observations via Magnetic Diagnostics Magnetic islands, statistical methods, magnetic diagnostics, tokamak operation.
IEA RFP Workshop, April Padova Internal electron transport barriers in RFX-mod helical equilibria R. Lorenzini on behalf of the RFX-mod team.
53rd Annual Meeting of the Division of Plasma Physics, November , 2011, Salt Lake City, Utah When the total flow will move approximately along the.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
1 Recent Progress on QPS D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson, A. S. Ware, D. E. Williamson Improved coil design (see recent.
Presented by Yuji NAKAMURA at US-Japan JIFT Workshop “Theory-Based Modeling and Integrated Simulation of Burning Plasmas” and 21COE Workshop “Plasma Theory”
Energetic Particles Interaction with the Non-resonant Internal Kink in Spherical Tokamaks Feng Wang*, G.Y. Fu**, J.A. Breslau**, E.D. Fredrickson**, J.Y.
54th Annual Meeting of the APS Division of Plasma Physics, October 29 – November 2, 2012, Providence, Rhode Island 3-D Plasma Equilibrium Reconstruction.
17th ISHW Oct. 12, 2009, Princeton, NJ, USA Effect of Nonaxisymmetric Perturbation on Profile Formation I-08 T. Morisaki, Y. Suzuki, J. Miyazawa, M. Kobayashi,
Influence of pressure-gradient and average- shear on ballooning stability semi-analytic expression for ballooning growth rate S.R.Hudson 1, C.C.Hegna 2,
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
25 th IAEA Fusion Energy Conference, St. Petersburg 2014 M. E. Puiatti 25 th IAEA Fusion Energy Conference, St. Petersburg 2014 Overview of the RFX-mod.
Mechanisms for losses during Edge Localised modes (ELMs)
CONCLUDING REMARKS During this ws: discussion of the 2009 experimental program after a first analysis of the proposals by the TFLs 134 proposals, equally.
Huishan Cai, Jintao Cao, Ding Li
F. Alladio, A. Mancuso, P. Micozzi, F. Rogier*
Presentation transcript:

Self-organized helical equilibria in the RFX-mod reversed field pinch D. Terranova 1, A.H. Boozer 2, M. Gobbin 1, L. Marrelli 1, S.P. Hirshman 3, N. Pomphrey 4 and the RFX-mod team 1 Consorzio RFX, Associazione Euratom-ENEA sulla fusione, Corso Stati Uniti 4, Padova (Italy) 2 Dept. of Applied Physics and Applied Mathematics, Columbia University, New York, NY ORNL Fusion Energy Division, Oak Ridge, TN Princeton Plasma Physics Laboratory, Princeton, NJ

17 th ISHW, October 2009, Princeton, New Jersey, USA Outline Self-organized helical equilibria: experimental evidence Equilibrium reconstruction: –Perturbative approach (NCT) –3D approach (VMEC): issue of magnetic flux and q VMEC for the RFP Conclusions

17 th ISHW, October 2009, Princeton, New Jersey, USA RFX-mod a Reversed Field Pinch experiment Largest RFP: R 0 = 2 m a = 0.46 m Max I p = 2 MA Max B T = 0.7 T

17 th ISHW, October 2009, Princeton, New Jersey, USA RFX-mod magnetic boundary: active coils 192 independently controlled coils covering the whole torus. Digital Controller with Cycle frequency of 2.5 kHz. Maximum radial field that can be produced: b r = 50 mT (DC) b r = 3.5 mT (100 Hz) ACTIVE COILS

17 th ISHW, October 2009, Princeton, New Jersey, USA RFP axisymmetric equilibrium profiles Strongly paramagnetic plasma with B T reversal at the edge. Strong magnetic shear. Safety factor is q<1 everywhere. In RFX-mod equilibria  is always > 6

17 th ISHW, October 2009, Princeton, New Jersey, USA Helical states: kinetic evidence A bean shaped thermal structure is visible in the tomographic reconstruction of SXR emissivity. T e gradients are associated to a dominant mode in the spectrum of the toroidal magnetic field. The structure can confine particles. SXR emissivity Density

17 th ISHW, October 2009, Princeton, New Jersey, USA Helical states: magnetic fluctuations evidence Helical states can survive several times the energy confinement time. They are interrupted by MHD relaxation events leading to MH states. n The dominant mode is the most internally resonant tearing mode. n

17 th ISHW, October 2009, Princeton, New Jersey, USA WE NEED A 3D EQUILIBRIUM (1/2) WE NEED A 3D EQUILIBRIUM (1/2) A perturbative approach in toroidal geometry

17 th ISHW, October 2009, Princeton, New Jersey, USA A helical equilbrium needs a helical coordinate The SHAx state is well described in terms of a helical flux  mn with m =1, n =7: Dominant mode F 0 TOROIDAL flux  0 POLOIDAL flux Axi-symmetric

17 th ISHW, October 2009, Princeton, New Jersey, USA Mapping T e on helical flux T e profiles are non-axisymmetric in r but not in  : T e = T e (  ). The transport barrier is due to the presence of “almost-invariant” helical flux surfaces.  (r) R. Lorenzini et al., Nature Physics 5 (2009)

17 th ISHW, October 2009, Princeton, New Jersey, USA Flux surfaces in RFX-mod helical equilibria R. Lorenzini et al., Nature Physics 5 (2009)

17 th ISHW, October 2009, Princeton, New Jersey, USA Flux surfaces in toroidal devices A. Boozer, Phys. Plasmas 5 (1998) 1647tokamak Heliac W7-X RFX-mod in helical state

17 th ISHW, October 2009, Princeton, New Jersey, USA The q profile: experimental finding The helical equilibrium is obtained spontaneously with an axi-symmetric boundary, BUT the calculated q profile has a particular shape, quite different form the axisymmetric one: q is not monotonic.

17 th ISHW, October 2009, Princeton, New Jersey, USA q profile and temperature barriers RFP and Tokamaks Experiments with reverse shear in Tokamaks shows a transition corresponding to the region inside the radius where q’=0 ( a minimum ). In RFX-mod confinement improves in the region inside the radius where q’=0 ( a maximum ).

17 th ISHW, October 2009, Princeton, New Jersey, USA F 0 TOROIDAL flux  0 POLOIDAL flux Code modification thanks to S.P. Hirshman From toroidal flux to poloidal flux WE NEED A 3D EQUILIBRIUM(2/2) WE NEED A 3D EQUILIBRIUM (2/2) A full 3D code VMEC for the RFP

17 th ISHW, October 2009, Princeton, New Jersey, USA VMEC Axisymmetric and Helical equilibria INPUT PARAMETERS: q(s) = 1/  (s)  = 0 circular and axi-symmetric LCFS (fixed boundary) axisymmetric helical POLOIDAL FLUX

17 th ISHW, October 2009, Princeton, New Jersey, USA Flux surfaces The flux surfaces obtained both in axisymmetric and helical configurations provide a good benchmark with present experimental observations.

17 th ISHW, October 2009, Princeton, New Jersey, USA Magnetic field and current density profiles BB BB AXI-SYMMETRIC AXIS BB BB HELICAL JJ JJ JJ JJ

17 th ISHW, October 2009, Princeton, New Jersey, USA Magnetic field profiles asymmetries For more detailes see the Poster by Marco Gobbin on Wednesday (P03-06). With respect to the axisymmetric configuration B T has a small deviation while B P has a large deviation.  op   op   op   op 

17 th ISHW, October 2009, Princeton, New Jersey, USA Flux surfaces and field strength |B| 0.55 T 1.3 T

17 th ISHW, October 2009, Princeton, New Jersey, USA VMEC free boundary VMEC in free boundary mode to asses the issue of using RFX-mod active boundary control system for controlling the helical equilibrium as suggested by recent studies and papers (for examples A.H. Boozer and N. Pomphrey, Phys. Plasmas 16 (2009) ).

17 th ISHW, October 2009, Princeton, New Jersey, USA Conclusions In RFX-mod spontaneous helical equilibria with an axisymmetric boundary show improved performances both in terms of energy and particle confinement. Equilibrium reconstruction requires a 3D analysis. Two aproaches were adopted: a perturbative approach in toroidal geometry (NCT) and a full 3D approach (VMEC modified for the RFP). Reconstructed equilibria allow a correct interpretation of experimental data and a more complete description of helical states. VMEC proves to be a powerful tool and allows the use of a suite of codes: –Equilibrium with pertubations [SIESTA]. – Stability : current and pressure [COBRA] driven modes. – Transport : DKES and ASTRA [G. Pereversev et al., Max Planck Institut für Plasmaphysik, Rep. IPP 5/98 Garching, February 2002]). Collaborations are ongoing and being started on these topics.

17 th ISHW, October 2009, Princeton, New Jersey, USA RFX-mod team P. Martin 5, L. Apolloni 5, M. E. Puiatti 5, J. Adamek 6, M. Agostini 5, A. Alfier 5, S. V. Annibaldi 7, V. Antoni 5, F. Auriemma 5, O. Barana 5, M. Baruzzo 5, P. Bettini 5, T. Bolzonella 5, D. Bonfiglio 5, F. Bonomo 5, A.H. Boozer 15, M. Brombin 5, J. Brotankova 6, A. Buffa 5, P. Buratti 7, A. Canton 5, S. Cappello 5, L. Carraro 5, R. Cavazzana 5, M. Cavinato 5, B. E. Chapman 8, G. Chitarin 5, S. Dal Bello 5, A. De Lorenzi 5, G. De Masi 5, D.F. Escande 5,9, A. Fassina 5, A. Ferro 5, P. Franz 5, E. Gaio 5, E. Gazza 5, L. Giudicotti 5, F. Gnesotto 5, M. Gobbin 5, L. Grando 5, L. Guazzotto 5, S.C. Guo 5, S.P. Hirschman 16, V. Igochine 10, P. Innocente 5, Y.Q. Liu 11, R. Lorenzini 5, A. Luchetta 5, G. Manduchi 5, G. Marchiori 5, D. Marcuzzi 5, L. Marrelli 5, S. Martini 5, E. Martines 5, K. McCollam 8, F. Milani 5, M. Moresco 5, L. Novello 5, S. Ortolani 5, R. Paccagnella 5, R. Pasqualotto 5, S. Peruzzo 5, R. Piovan 5, P. Piovesan 5, L. Piron 5, A. Pizzimenti 5, N. Pomaro 5, N. Pomphrey 14, I. Predebon 5, J.A. Reusch 8, G. Rostagni 5, G. Rubinacci 12, J.S. Sarff 8, F. Sattin 5, P. Scarin 5, G. Serianni 5, P. Sonato 5, E. Spada 5, A. Soppelsa 5, S. Spagnolo 5, M. Spolaore 5, G. Spizzo 5, C. Taliercio 5, D. Terranova 5, V. Toigo 5, M. Valisa 5, N. Vianello 5, F. Villone 13, R.B. White 14, D. Yadikin 10, P. Zaccaria 5, A. Zamengo 5, P. Zanca 5, B. Zaniol 5, L. Zanotto 5, E. Zilli 5, H. Zohm 10 and M. Zuin 5 5 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova, Italy 6 Institute of Plasma Physics, Association EURATOM-IPP.CR, Prague 18200, Czech Republic 7 Space and Plasma Physics, EE KTH, SE Stockholm, Sweden 8 Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 9 UMR 6633 CNRS-Université de Provence, Marseille, France 10 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany 11 EURATOM-UKAEA Fusion Ass., Culham Science Centre, Abingdon OX14 3DB, UK 12 Ass. Euratom/ENEA/CREATE, DIEL, Università di Napoli Federico II, Napoli 80125, Italy 13 Ass. Euratom/ENEA/CREATE, DAEIMI, Università di Cassino, Cassino 03043, Italy 14 Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA 15 Dept. of Applied Physics and Mathematics, Columbia University, New York, NY 10027, USA 16 ORNL Fusion Energy Division, Oak Ridge, TN 37830, USA

17 th ISHW, October 2009, Princeton, New Jersey, USA RFX-mod team

17 th ISHW, October 2009, Princeton, New Jersey, USA VMEC free boundary

17 th ISHW, October 2009, Princeton, New Jersey, USA Trapped particles with ORBIT Poloidal Trapping Banana width: 0.2 cm (800 eV) Helical Trapping Passing Ion Banana width: 0.5 – 5 cm (300 – 1200 eV)

17 th ISHW, October 2009, Princeton, New Jersey, USA MH DAx SHAx D i,MH ~ m²/s D i,DAX ~ 1-3 m²/s D i,SHAX ~ m²/s T i ~ keV n i ~ 2-4·10 19 m -3 SHAx: the main contribution comes from trapped particles (poloidally + helically). MH: the main contribution comes from chaotic transport. D e,SHAX  D i,SHAX Ion diffusion coefficient with ORBIT In helical configurations the total fraction of trapped particles may increase up to ~ 40%, to be compared with a fraction of ~ 30% in the axisymmetric ones. D pas / D trap ~ 0.01 at T e =T i =800 eV

17 th ISHW, October 2009, Princeton, New Jersey, USA Tokamak: electron transport barriers triggered by a minimum of q barrier location at qmin position RFP: electron transport barriers linked to a maximum of q barrier location at qmax position from Connor et al, Nucl. Fus 

17 th ISHW, October 2009, Princeton, New Jersey, USA

ITBs are correlated to regions of reduced magnetic chaos. Barriers in RFX helical states can be described in terms of ALMOST INVARIANT FLUX SURFACES. S.R. Hudson and J. Breslau, PRL 100, (2008) Across the larger islands the temperature flattens, and across the cantori (broken KAM surfaces) and small islands temperature gradients are supported. ITBs correspond to weak chaos