Field-aligned currents associated with interchange injections at Saturn Anna DeJong, James Burch and Roberto Livi Southwest Research Institute.

Slides:



Advertisements
Similar presentations
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Direct measurements of chorus wave effects on electrons in the.
Advertisements

Electron Acceleration in the Van Allen Radiation Belts by Fast Magnetosonic Waves Richard B. Horne 1 R. M. Thorne 2, S. A. Glauert 1, N. P. Meredith 1.
Statistical study of non-reconnection plasma jets as observed by the DOUBLE STAR spacecraft E. Amata 1, S. Savin 2, D. Ambrosino 1, L. Trenchi 1, M.F.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Pitch angle evolution of energetic electrons at geosynchronous.
Evidence at Saturn for an Inner Magnetospheric Convection Pattern, Fixed in Local Time M. F. Thomsen (1), R. L. Tokar (1), E. Roussos (2), M. Andriopoulou.
Seminar S 3, IMPRS, MPAeJanuary 9, 2003 N. Krupp Planetary Magnetospheres: Global Configuration and Dynamics of the Jovian Magnetosphere N. Krupp Solar.
The Importance of Wave Acceleration and Loss for Dynamic Radiation Belt Models Richard B. Horne M. M. Lam, N. P. Meredith and S. A. Glauert, British Antarctic.
Electron Acceleration inside Jupiter’s Radiation Belt and the Origin of Synchrotron Radiation Richard B. Horne 1 R. M. Thorne 2, S. A. Glauert 1, J. D.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
The role of solar wind energy flux for transpolar arc luminosity A.Kullen 1, J. A. Cumnock 2,3, and T. Karlsson 2 1 Swedish Institute of Space Physics,
Radiation Belt Loss at the Magnetopause T. G. Onsager, J. C. Green, H. J. Singer, G. D. Reeves, S. Bourdarie Suggest a pitch-angle dependence of magnetopause.
Auxiliary slides. ISEE-1 ISEE-2 ISEE-1 B Locus of  = 90 degree pitch angles Will plot as a sinusoid on a latitude/longitude projection of the unit.
PLASMA TRANSPORT ALONG DISCRETE AURORAL ARCS A.Kullen 1, T. Johansson 2, S. Buchert 1, and S. Figueiredo 2 1 Swedish Institute of Space Physics, Uppsala.
Observation of Auroral-like Peaked Electron Distributions at Mars D.A. Brain, J.S. Halekas, M.O. Fillingim, R.J. Lillis, L.M. Peticolas, R.P. Lin, J.G.
Summer student work at MSSL, 2009 Kate Husband – investigation of magnetosheath electron distribution functions. Flat-topped PSD distributions, correlation.
CISM Radiation Belt Models CMIT Mary Hudson CISM Seminar Nov 06.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
Tidal Structures in the Equatorial Ionosphere C. Y. Huang 1, S. H. Delay 2, E. K. Sutton 1, and P. A. Roddy 1, 1 Air Force Research Laboratory 2 Boston.
Finite Temperature Effects on VLF-Induced Precipitation Praj Kulkarni, U.S. Inan and T. F. Bell MURI Review February 18, 2009.
Motivation + Objective  Previous statistical results are limited due to frequency coverage (> 100 Hz) and lack of polarization properties.  Unusually.
Solar System Physics Group Grande et al, Venus, RAS 2010 Solar wind interactions and Ionospheric loss mechanisms at Venus M Grande, A G Wood, I C Whittaker,
Thermospheric Density Enhancements from Unexpected Energy Deposition During Bz North and Strong By Conditions Geoff Crowley, ASTRA Delores Knipp, NCAR.
Comparison of Field-Aligned Currents calculated by single spacecraft and dual spacecraft methods. Yulia V. Bogdanova, Malcolm W. Dunlop RAL Space, STFC,
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Auroral Boundaries Model Validation – What has been done.
Cusp O+ H+ e- "SPI" event #1 event #2 MLT energy ratio = 15~20 O+ H+ 68°CGLat66°CGLat 63°CGLat #1) Mono-energetic ion injection with O+ faster.
The First Two Years of IMAGE Jim Burch Southwest Research Institute Magnetospheric Imaging Workshop Yosemite National Park, California February 5-8, 2002.
D. Sibeck, R. Millan, H. Spence
Comparisons of Inner Radiation Belt Formation in Planetary Magnetospheres Richard B Horne British Antarctic Survey Cambridge Invited.
Energetic charged particle injections at Saturn C. Paranicas 1, D. G. Mitchell 1, D. C. Hamilton 2, S. M. Krimigis 1, B. H. Mauk 1, P. C. Brandt 1, J.
Magnetosphere-Ionosphere coupling processes reflected in
14 May JIM M. RAINES University of Michigan DANIEL J. GERSHMAN, THOMAS H. ZURBUCHEN, JAMES A. SLAVIN, HAJE KORTH, and BRIAN J. ANDERSON Magnetospheric.
Hot He + events in the inner magnetosphere observed by Cluster M. Yamauchi 1, I. Dandouras 2, H. Reme 2, H. Nilsson 1 (1) Swedish Institute of Space Physics.
Structure and dynamics of induced plasma tails César L. Bertucci Presented by Oleg Vaisberg Institute for Astronomy and Space Physics, Buenos Aires, Argentina.
Multi-fluid MHD Study on Ion Loss from Titan’s Atmosphere Y. J. Ma, C. T. Russell, A. F. Nagy, G. Toth, M. K. Dougherty, A. Wellbrock, A. J. Coates, P.
MOP 2011, BOSTON, MA, USAJuly 14, 2011 Norbert Krupp Open-Close Field line Boundary Characterization of Saturn‘s magnetosphere using Cassini MIMI-LEMMS.
A statistical study of the Field-Aligned Electron Events (status report) Solène Lejosne, Forrest Mozer and Oleksiy Agapitov SSL, University of California,
Saturn’s 10.8 hour periodicity—relationship between cold, sub-corotating plasma and hot ring current particles Don Mitchell Pontus Brandt Abi Rymer Jim.
Acknowledgements. This work was supported in part by the Cassini Data Analysis Program under grant NNX11AK65G to Johns Hopkins University, NASA-JPL contract.
Oxygen Injection Events observed by Freja Satellite M. Yamauchi 1, L. Eliasson 1, H. Nilsson 1, R. Lundin 1, and O. Norberg 2 1.Swedish Institute of Space.
07/11/2007ESSW4, Brussels1 Coupling between magnetospheric and auroral ionospheric scales during space weather events M. ECHIM (1,2), M. ROTH(1) and J.
A magnetospheric vortex as the source of periodicities in Saturn’s magnetosphere Krishan Khurana Institute of Geophysics and Planetary Physics, UCLA, Los.
Gurnett, 2010 BqBq B tot Ring Current and Asymmetric Ring Current Magnetospheres of the Outer Planets - Boston, MA July 13, 2011 BRBqBfBtBRBqBfBt dB q.
Density trends of negative ions at Titan A. Wellbrock 1,2,3, A. J. Coates 1,3, G. H. Jones 1,3, G. R. Lewis 1,3, C. S. Arridge 1,3, D. T. Young 4, B. A.
Saturn’s spin periodicities caused by a rotating partial ring current Krishan Khurana Institute of Geophysics and Planetary Physics, UCLA, Los Angeles,
The Clock at Saturn: How mass unloading may be modulated at the SKR periods, and how those periods may be imposed throughout the magnetosphere (slight.
Mapping the sub-oval proton auroras into the magnetosphere A. G. Yahnin and T. A. Yahnina Polar Geophysical Institute, Apatity, Russia Plasma Physics in.
1 Joachim Birn LANL Karl Schindler Ruhr-Univ. Bochum Michael Hesse NASA/GSFC Thin Electron Current Sheets and Auroral Arcs Relationship between magnetospheric.
Magnetic reconnection in the magnetotail: Geotail observations T. Nagai Tokyo Institute of Technology World Space Environment Forum 2005 May 4, 2005 Wednesday.
ENA generation mechnism Krimigis et al, 2004 Some Questions about the Interaction between Trapped Particles and Neutrals l What is the source of trapped.
Hot He + events in the inner magnetosphere observed by Cluster 1 Yamauchi, et al. (2014), JGR, doi: /2013JA Inner magnetosphere: Majority.
Multi-Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration X. Shao 1, L. C. Tan 1, A. S. Sharma 1,
Radio and Space Plasma Physics Group Tracking solar wind structures from the Sun through to the orbit of Mars A.O. Williams 1, N.J.T. Edberg 1,2, S.E.
The large scale convection electric field, ring current energization, and plasmasphere erosion in the June 1, 2013 storm Scott Thaller Van Allen Probes.
SHINE 2004 Session 41 New Radiation Belts and Other Effects of Cycle 23 SEP Events J. E. Mazur, J. B. Blake, P. L. Slocum The Aerospace Corporation M.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.
Particle energization at Saturn C. Paranicas 1, E. Roussos 2, P. Kollmann 2, N. Krupp 2, J. F. Carbary 1, D. G. Mitchell 1, S. M. Krimigis 1, B. H. Mauk.
1 CHARM: MAPS highlights CHARM: MAPS highlights 2010.
ENA generation mechnism Krimigis et al, 2004 Some Questions about the Interaction between Trapped Particles and Neutrals l What is the source of trapped.
Lecture 15 Modeling the Inner Magnetosphere. The Inner Magnetosphere The inner magnetosphere includes the ring current made up of electrons and ions in.
Energy inputs from Magnetosphere to the Ionosphere/Thermosphere ASP research review Yue Deng April 12 nd, 2007.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Dynamics of the auroral bifurcations at Saturn and their role in magnetopause reconnection LPAP - Université de Liège A. Radioti, J.-C. Gérard, D. Grodent,
Details of Particle Motion
W. D. Cramer1, J. Raeder1, F. R. Toffoletto2, M. Gilson1,3, B. Hu2,4
Evidence for Dayside Interhemispheric Field-Aligned Currents During Strong IMF By Conditions Seen by SuperDARN Radars Joseph B.H. Baker, Bharat Kunduri.
The Physics of Space Plasmas
Environmental conditions during the charging anomaly of the two geosynchronous satellites reported: TELSTAR 401 and Galaxy 15 Elena Saiz, A. Guerrero,
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
Presentation transcript:

Field-aligned currents associated with interchange injections at Saturn Anna DeJong, James Burch and Roberto Livi Southwest Research Institute

Interchange injections Burch et al. 2005

Ions and electrons during interchange injections UT Temperature increase Density decreases Electrons Ions

Field-aligned and trapped electrons during injections Trapped = 70°-110° pitch angles Field-aligned = 0°-20° and 160°-180° pitch angles DeJong et al Fluxes peak in the eV range

Statistics of Average Flux for eV SLS3 DeJong 2010 More injections close to 330° SLS3? But others have not seen SLS3 dependence in injection location.

Local Time Asymmetry LT DeJong eV electrons penetrate deeper on nightside. Elliptical rotation (Thomsen this meeting) Stronger injections on the nightside due to larger pressure differences (DeJong 2011 GRL) Trapped Field-aligned Carbary 2009 and Paranicas 2010 see similar local time differences in high energy electrons.

Currents associated with injections Field-aligned currents on the edges of the injection drive the flux tube inward. From Rymer et al. 2009

FACs using Magnetometer Data ΔB ϕ ΔB r ΔB FA FAC UT L ≈ 6.7 LT ≈17.5 SLS3 ≈ 100L ≈ 7.1 LT ≈2.3 SLS3 ≈172

FACs using ELS FAC FAC ELS (>10eV) FAC ELS (>10ev) FAC Mag Anode 4 UT L ≈ 6.7 LT ≈17.5 SLS3 ≈ 100L ≈ 7.1 LT ≈2.3 SLS3 ≈172

Conclusions Calculations of field-aligned current using ELS give similar results to the FACs calculated using the Mag data. Not only are the cool electrons (10-100eV) related to injections they carry most of the current. Schippers (This meeting) found that inside 9 Rs electrons less than 100 eV carry the current.

What’s next? Find more events with good pitch angle coverage. Account for spacecraft potential. Compare the FAC dayside and nightside FACs in order to further investigate the penetration of electrons deeper into the inner magnetosphere on the nightside (DeJong 2010) Calculate velocities and flux tube content using the ion moments.