1 CHEMICAL BONDING Cocaine Chemistry I – Chapter 6 Adv. Chemistry – Chapter 5.

Slides:



Advertisements
Similar presentations
Part 1:Lewis Dot Diagrams and Structures
Advertisements

Electron Distribution in Molecules
Chemical Bonds: The Formation of Compounds From Atoms Chapter 11 Outline I.Periodic Trends A.Atomic Radius B.Metallic Character C.Ionization Energy D.Ionic.
1 BONDING & MolecularGeometry Cocaine Chemistry I – Chapter 8 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead.
Unit 5B: Covalent Bonding
Chemical Bonding and VSEPR L. Scheffler IB Chemistry 1-2 Lincoln High School 1.
Chapter 7. Chemical Bonds Chemical bonds are the attractive forces that hold atoms together in a complex unit.
1 CHEMICAL BONDING w/ Emch Cocaine. 2 Chemical Bonding Problems and questions — How is a molecule or polyatomic ion held together? What’s the difference.
18, 20 Oct 97Bonding and Structure1 Chemical Bonding and Molecular Structure (Chapter 9) Ionic vs. covalent bonding Molecular orbitals and the covalent.
Naming Covalent Compounds When it is all NONMETALS.
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
Chemical Bonding and VSEPR L. Scheffler IB Chemistry 1-2 Lincoln High School 1.
Chemical Bonding Chapter 6 Sections 1, 2, and 5. Chemical Bonds A chemical bond is the mutual electrical attraction between the nuclei and valence electrons.
Chemical Bonding and Molecular Structure Chapter 12 Sec Chapter 12 Sec
MOLECULAR GEOMETRY Bonding Unit. VSEPR VSEPR V alence S hell E lectron P air R epulsion theory.V alence S hell E lectron P air R epulsion theory. Most.
1 Bond and Lone Pairs Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS.Valence electrons are distributed as shared.
Chapter 1 Section 4 Covalent Bonding.
Covalent Bonding Chapter 8.
Chapter 6.2 and 6.5 Covalent Compounds.
Chapter 8 Covalent Compounds. Covalent Bonds Sharing Electrons –Covalent bonds form when atoms share one or more pairs of electrons nucleus of each atom.
CHEMICAL BONDING Cocaine
Chemistry Tuesday!!!!! 1/24/12 Bell Ringer Schedule
CHEMICAL BONDING Set 3 Cocaine
1 MOLECULAR GEOMETRY. 2 VSEPR VSEPR V alence S hell E lectron P air R epulsion theory.V alence S hell E lectron P air R epulsion theory. Most important.
1 What is electronegativity? What types of bonds did you read about last night?
Lewis Structures In Covalent Bonds valence electrons are distributed as shared or BOND PAIRS , and unshared or LONE PAIRS. • •• H Cl shared or bond pair.
Bonding Unit Learning Goal #1: Analyze the relationship between the valence (outermost) electrons of an atom and the type of bond formed between atoms.
1 CHEMICAL BONDING Cocaine. 2 Chemical Bonding Problems and questions — How is a molecule or polyatomic ion held together? Why are atoms distributed at.
Molecular Shape and Polarity The Importance of Geometry in Determining Physical Properties.
Section 12.1 Characteristics of Chemical Bonds 1.To learn about ionic and covalent bonds and explain how they are formed 2.To learn about the polar covalent.
Unit 6A: Ionic and Covalent Bonding. Ions Why do elements in the same group behave similarly? They have the same number of valence electrons. Valence.
Covalent Compounds Chapter Covalent Bonds. Covalent Bond The sharing of electrons between atoms Forms a molecule To have stable (filled) orbitals.
PAP Chapter 6 CHEMICAL BONDING Cocaine. Chemical Bonding  A chemical bond is a mutual electrical attraction between the nuclei and valence electrons.
Bonding and Molecular Structure: Fundamental Concepts
1 CHEMICAL BONDING Cocaine. 2 Chemical Bonding Problems and questions — How is a molecule or polyatomic ion held together? Why are atoms distributed at.
1 Bond and Lone Pairs Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS.Valence electrons are distributed as shared.
1 CHEMICAL BONDING Cocaine. 2 Chemical Bonding What property of atoms determines the type of bond they form?
1 Chemical Bonds The Formation of Compounds From Atoms Chapter 11 Hein and Arena.
1 Chemical Bonding Problems and questions — How is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules.
Bonding and Structure 1 Chemical Bonding and Molecular Structure Ionic vs. covalent bonding Molecular orbitals and the covalent bond Valence electron Lewis.
Bonding – General Concepts. Why Do Chemical Reactions Occur?
1 CHEMICAL BONDING Cocaine Chemistry I – Chapter 8 Chemistry I Honors – Chapter 12 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print.
1 CHEMICAL BONDING Cocaine Adapted from
Unit 6: Chemical Bonding and Intermolecular Forces
Bond and Lone Pairs Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS. • •• H Cl shared or bond pair lone pair (LP)
No Bellwork 10/13/15 Review your grade report. Questions after class.
5.1 Ionic Bonds: Chemical Bonding
Chemical Bonding and Molecular Structure (Chapter 9)
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
Molecular Geometry Cocaine
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
Bond Polarity and Molecular Geometry
CHEMICAL BONDING Cocaine
CHEMICAL BONDING Cocaine
Chemical Bonds.
Chemical Bonding The Covalent Bond.
Drawing Lewis Structures
Although all covalent bonds involve a sharing of one or more pairs of electrons between bonding atoms, most of the time this sharing is not equal. One.
ChemicalBonding Honors Only Problems and questions —
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
Chemical Bonding and VSEPR
CHEMICAL BONDING By Mrs. Idha Nurhayati, SPd. Cocaine
Covalent Bonding.
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
Chemical Bonding and Molecular Structure
Basic Concept in Chemistry Class : M.Sc. I
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
Presentation transcript:

1 CHEMICAL BONDING Cocaine Chemistry I – Chapter 6 Adv. Chemistry – Chapter 5

2 Chemical Bonding Problems and questions — How is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat? Can we predict the structure? How is structure related to chemical and physical properties?

3 Review of Chemical Bonds There are 3 forms of bonding:There are 3 forms of bonding: _________—complete transfer of 1 or more electrons from one atom to another (one loses, the other gains) forming oppositely charged ions that attract one another_________—complete transfer of 1 or more electrons from one atom to another (one loses, the other gains) forming oppositely charged ions that attract one another _________—some valence electrons shared between atoms_________—some valence electrons shared between atoms _________ – holds atoms of a metal together_________ – holds atoms of a metal together Most bonds are somewhere in between ionic and covalent.

4 The type of bond can usually be calculated by finding the difference in electronegativity of the two atoms that are going together.

5 Electronegativity Difference If the difference in electronegativities is between: – 1.7 to 4.0: Ionic – 0.3 to 1.7: Polar Covalent – 0.0 to 0.3: Non-Polar Covalent Example: NaCl Na = 0.8, Cl = 3.0 Difference is 2.2, so this is an ionic bond!

6 Ionic Bonds All those ionic compounds were made from ionic bonds. We’ve been through this in great detail already. Positive cations and the negative anions are attracted to one another (remember the Paula Abdul Principle of Chemistry: Opposites Attract!) Therefore, ionic compounds are usually between metals and nonmetals (opposite ends of the periodic table).

7 Electron Distribution in Molecules Electron distribution is depicted with Lewis (electron dot) structuresElectron distribution is depicted with Lewis (electron dot) structures This is how you decide how many atoms will bond covalently! (In ionic bonds, it was decided with charges)This is how you decide how many atoms will bond covalently! (In ionic bonds, it was decided with charges) G. N. Lewis

8 Bond and Lone Pairs Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS.Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS. HCl lone pair (LP) shared or bond pair This is called a LEWIS structure.

9 Bond Formation A bond can result from an overlap of atomic orbitals on neighboring atoms. Cl HH + Overlap of H (1s) and Cl (2p) Note that each atom has a single, unpaired electron.

10 Review of Valence Electrons Remember from the electron chapter that valence electrons are the electrons in the OUTERMOST energy level… that’s why we did all those electron configurations!Remember from the electron chapter that valence electrons are the electrons in the OUTERMOST energy level… that’s why we did all those electron configurations! B is 1s 2 2s 2 2p 1 ; so the outer energy level is 2, and there are 2+1 = 3 electrons in level 2. These are the valence electrons!B is 1s 2 2s 2 2p 1 ; so the outer energy level is 2, and there are 2+1 = 3 electrons in level 2. These are the valence electrons! Br is [Ar] 4s 2 3d 10 4p 5 How many valence electrons are present?Br is [Ar] 4s 2 3d 10 4p 5 How many valence electrons are present?

11 Review of Valence Electrons Number of valence electrons of a main (A) group atom = Group number

12 Steps for Building a Dot Structure Ammonia, NH 3 1. Decide on the central atom; never H. Why? If there is a choice, the central atom is atom of lowest affinity for electrons. (Most of the time, this is the least electronegative atom…in advanced chemistry we use a thing called formal charge to determine the central atom. But that’s another story!) Therefore, N is central on this one If there is a choice, the central atom is atom of lowest affinity for electrons. (Most of the time, this is the least electronegative atom…in advanced chemistry we use a thing called formal charge to determine the central atom. But that’s another story!) Therefore, N is central on this one 2. Add up the number of valence electrons that can be used. H = 1 and N = 5 H = 1 and N = 5 Total = (3 x 1) + 5 Total = (3 x 1) + 5 = 8 electrons / 4 pairs = 8 electrons / 4 pairs

13 3.Form a single bond between the central atom and each surrounding atom (each bond takes 2 electrons!) H H H N Building a Dot Structure H H H N 4.Remaining electrons form LONE PAIRS to complete the octet as needed (or duet in the case of H). 3 BOND PAIRS and 1 LONE PAIR. Note that N has a share in 4 pairs (8 electrons), while H shares 1 pair.

14 5.Check to make sure there are 8 electrons around each atom except H. H should only have 2 electrons. This includes SHARED pairs. Building a Dot Structure 6. Also, check the number of electrons in your drawing with the number of electrons from step 2. If you have more electrons in the drawing than in step 2, you must make double or triple bonds. If you have less electrons in the drawing than in step 2, you made a mistake! H H H N

15 Carbon Dioxide, CO 2 1. Central atom = 2. Valence electrons = 3. Form bonds. 4. Place lone pairs on outer atoms. This leaves 12 electrons (6 pair). 5. Check to see that all atoms have 8 electrons around it except for H, which can have 2. C 4 e- O 6 e- X 2 O’s = 12 e- Total: 16 valence electrons

16 Carbon Dioxide, CO 2 6. There are too many electrons in our drawing. We must form DOUBLE BONDS between C and O. Instead of sharing only 1 pair, a double bond shares 2 pairs. So one pair is taken away from each atom and replaced with another bond. C 4 e- O 6 e- X 2 O’s = 12 e- Total: 16 valence electrons How many are in the drawing?

17 Double and even triple bonds are commonly observed for C, N, P, O, and S H 2 CO SO 3 C2F4C2F4C2F4C2F4

18 Now You Try One! Draw Sulfur Dioxide, SO 2

19 Violations of the Octet Rule (Honors only) Usually occurs with B and elements of higher periods. Common exceptions are: Be, B, P, S, and Xe. BF 3 SF 4 Be: 4 B: 6 P: 8 OR 10 S: 8, 10, OR 12 Xe: 8, 10, OR 12

20 MOLECULAR GEOMETRY

21 VSEPR VSEPR V alence S hell E lectron P air R epulsion theory.V alence S hell E lectron P air R epulsion theory. Most important factor in determining geometry is relative repulsion between electron pairs.Most important factor in determining geometry is relative repulsion between electron pairs. Molecule adopts the shape that minimizes the electron pair repulsions. MOLECULAR GEOMETRY

22 Some Common Geometries Linear Trigonal Planar Tetrahedral

23 VSEPR charts Use the Lewis structure to determine the geometry of the moleculeUse the Lewis structure to determine the geometry of the molecule Electron arrangement establishes the bond anglesElectron arrangement establishes the bond angles Molecule takes the shape of that portion of the electron arrangementMolecule takes the shape of that portion of the electron arrangement Charts look at the CENTRAL atom for all data!Charts look at the CENTRAL atom for all data! Think REGIONS OF ELECTRON DENSITY rather than bonds (for instance, a double bond would only be 1 region)Think REGIONS OF ELECTRON DENSITY rather than bonds (for instance, a double bond would only be 1 region)

24 Structure Determination by VSEPR Water, H 2 O The electron pair geometry is TETRAHEDRAL The molecular geometry is BENT. 2 bond pairs 2 lone pairs

25 Structure Determination by VSEPR Ammonia, NH 3 The electron pair geometry is tetrahedral. The MOLECULAR GEOMETRY — the positions of the atoms — is TRIGONAL PYRAMID.

26 Bond Polarity HCl is POLAR because it has a positive end and a negative end. (difference in electronegativity) Cl has a greater share in bonding electrons than does H. Cl has slight negative charge (-  ) and H has slight positive charge (+  )

27 This is why oil and water will not mix! Oil is nonpolar, and water is polar.This is why oil and water will not mix! Oil is nonpolar, and water is polar. The two will repel each other, and so you can not dissolve one in the otherThe two will repel each other, and so you can not dissolve one in the other Bond Polarity

28 Bond Polarity “Like Dissolves Like”“Like Dissolves Like” –Polar dissolves Polar –Nonpolar dissolves Nonpolar

29 Diatomic Elements These elements do not exist as a single atom; they always appear as pairs When atoms turn into ions, this NO LONGER HAPPENS! –Hydrogen –Nitrogen –Oxygen –Fluorine –Chlorine –Bromine –Iodine Remember: BrINClHOF