Wednesday, April 15, 2015 PHYS 3313-001, Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.

Slides:



Advertisements
Similar presentations
Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger.
Advertisements

Chapter (6) Introduction to Quantum Mechanics.  is a single valued function, continuous, and finite every where.
Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
1 Chapter 40 Quantum Mechanics April 6,8 Wave functions and Schrödinger equation 40.1 Wave functions and the one-dimensional Schrödinger equation Quantum.
CHAPTER 6 Quantum Mechanics II
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #21
CHAPTER 6 Quantum Mechanics II
6.1The Schrödinger Wave Equation 6.2Expectation Values 6.3Infinite Square-Well Potential 6.4Finite Square-Well Potential 6.5Three-Dimensional Infinite-Potential.
Monday, Nov. 5, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 1, 2012 Dr. Jaehoon Yu Alpha Particle Decay.
Unbound States 1. A review about the discussions we have had so far on the Schrödinger equation. 2. Quiz Topics in Unbound States:  The potential.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
Wednesday, April 22, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 22 Wednesday, April 22, 2015 Dr. Barry Spurlock.
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
1 PHYS 3313 – Section 001 Lecture #22 Monday, Apr. 14, 2014 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen.
Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Nov. 6, 2013 Dr. Jaehoon Yu Barriers and.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
Physics Lecture 15 10/29/ Andrew Brandt Wednesday October 29, 2014 Dr. Andrew Brandt 0. Hw’s due on next 3 Mondays, test on Nov Wells+Barriers.
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.

Chapter 41 1D Wavefunctions. Topics: Schrödinger’s Equation: The Law of Psi Solving the Schrödinger Equation A Particle in a Rigid Box: Energies and Wave.
Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Physics 451 Quantum mechanics I Fall 2012 Sep 12, 2012 Karine Chesnel.
1 PHYS 3313 – Section 001 Lecture #16 Monday, Mar. 24, 2014 Dr. Jaehoon Yu De Broglie Waves Bohr’s Quantization Conditions Electron Scattering Wave Packets.
Monday, Oct. 7, 2013PHYS , Fall 2013 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 7, 2013 Dr. Amir Farbin Wave Motion & Properties.
1 PHYS 3313 – Section 001 Lecture #23 Tuesday, Apr. 16, 2014 Dr. Jaehoon Yu Schrodinger Equation for Hydrogen Atom Quantum Numbers Solutions to the Angular.
1 PHYS 3313 – Section 001 Lecture #18 Monday, Mar. 31, 2014 Dr. Jaehoon Yu Valid Wave Functions Energy and Position Operators Infinite Square Well Potential.
Monday, April 6, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, April 6, 2015 Dr. Jaehoon Yu Normalization.
Research quantum mechanical methods of bioobjects.
Monday, March 30, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, March 30, 2015 Dr. Jaehoon Yu Wave Motion.
PHYS 3313 – Section 001 Lecture #18
Wednesday, Oct. 31, 2012PHYS , Fall 2012 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Oct. 31, 2012 Dr. Amir Farbin Reflection.
Physical Chemistry III (728342) The Schrödinger Equation
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
CHAPTER 6 Quantum Mechanics II
Wednesday, Nov. 7, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Wednesday, Nov. 7, 2012 Dr. Jaehoon Yu Solutions for.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Wednesday, April 1, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability.
1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and.
PHYS 3313 – Section 001 Lecture #16
Solutions of Schrodinger Equation
CHAPTER 5 The Schrodinger Eqn.
Chapter 40 Quantum Mechanics
Electrical Engineering Materials
CHAPTER 6 Quantum Mechanics II
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #17
Quantum Physics Schrödinger
CHAPTER 6 Quantum Mechanics II
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #21
CHAPTER 5 The Schrodinger Eqn.
Chapter 40 Quantum Mechanics
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #20
Particle in a Box.
Physics Lecture 13 Wednesday March 3, 2010 Dr. Andrew Brandt
CHAPTER 3 PROBLEMS IN ONE DIMENSION Particle in one dimensional box
PHYS 3313 – Section 001 Lecture #19
Chapter 40 Quantum Mechanics
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite Square Well Potential Penetration Depth Degeneracy Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay

Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 2 Announcements Research paper deadline is Monday, May 4 Research presentation deadline is Sunday, May 3 Homework #5 –CH6 end of chapter problems: 34, 39, 46, 62 and 65 –Due Wednesday, Apr. 22 Reading assignments –CH7.6 and the entire CH8 Bring out the special project #5 No Colloquium today

Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 3

Finite Square-Well Potential The finite square-well potential is The Schrödinger equation outside the finite well in regions I and III is for regions I and III, or using yields. The solution to this differential has exponentials of the form e α x and e - α x. In the region x > L, we reject the positive exponential and in the region x < 0, we reject the negative exponential. Why? Wednesday, April 15, PHYS , Spring 2015 Dr. Jaehoon Yu This is because the wave function should be 0 as x  ±infinity.

Inside the square well, where the potential V is zero and the particle is free, the wave equation becomes where Instead of a sinusoidal solution we can write The boundary conditions require that and the wave function must be smooth where the regions meet. Note that the wave function is nonzero outside of the box. Non-zero at the boundary either.. What would the energy look like? Finite Square-Well Solution Wednesday, April 15, PHYS , Spring 2015 Dr. Jaehoon Yu

Penetration Depth The penetration depth is the distance outside the potential well where the probability significantly decreases. It is given by It should not be surprising to find that the penetration distance that violates classical physics is proportional to Planck’s constant. Wednesday, April 15, PHYS , Spring 2015 Dr. Jaehoon Yu

The wave function must be a function of all three spatial coordinates. We begin with the conservation of energy Multiply this by the wave function to get Now consider momentum as an operator acting on the wave function. In this case, the operator must act twice on each dimension. Given: The three dimensional Schrödinger wave equation is Three-Dimensional Infinite-Potential Well Wednesday, April 15, PHYS , Spring 2015 Dr. Jaehoon Yu Rewrite

Consider a free particle inside a box with lengths L 1, L2 L2 and L3 L3 along the x, y, and z axes, respectively, as shown in the figure. The particle is constrained to be inside the box. Find the wave functions and energies. Then find the ground energy and wave function and the energy of the first excited state for a cube of sides L. Ex 6.10: Expectation values inside a box Wednesday, April 15, PHYS , Spring 2015 Dr. Jaehoon Yu What are the boundary conditions for this situation? Particle is free, so x, y and z wave functions are independent from each other! Each wave function must be 0 at the wall!Inside the box, potential V is 0. A reasonable solution is Using the boundary condition So the wave numbers are

Consider a free particle inside a box with lengths L 1, L 2 and L 3 along the x, y, and z axes, respectively, as shown in figure. The particle is constrained to be inside the box. Find the wave functions and energies. Then find the round energy and wave function and the energy of the first excited state for a cube of sides L. Ex 6.10: Expectation values inside a box Wednesday, April 15, PHYS , Spring 2015 Dr. Jaehoon Yu The energy can be obtained through the Schr ö dinger equation What is the ground state energy? When are the energies the same for different combinations of ni?ni? E 1,1,1 when n 1 =n 2 =n 3 =1, how much?

Degeneracy* Analysis of the Schrödinger wave equation in three dimensions introduces three quantum numbers that quantize the energy. A quantum state is degenerate when there is more than one wave function for a given energy. Degeneracy results from particular properties of the potential energy function that describes the system. A perturbation of the potential energy, such as the spin under a B field, can remove the degeneracy. Wednesday, April 15, PHYS , Spring 2015 Dr. Jaehoon Yu *Mirriam-webster: having two or more states or subdivisions