Motion of the ablation cloud in torus plasmas R.Ishizaki, N.Nakajima and M.Okamoto National Institute for Fusion Science US-Japna Workshop PPPL, Princeton,

Slides:



Advertisements
Similar presentations
November 3-5, 2003Feedback Workshop, Austin NORMAL MODE APPROACH TO MODELING OF FEEDBACK STABILIZATION OF THE RESISTIVE WALL MODE By M.S. Chu(GA), M.S.
Advertisements

Lecture Series in Energetic Particle Physics of Fusion Plasmas
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
RFP Workshop, Stockholm 9-11 /10/ 2008 Numerical studies of particle transport mechanisms in RFX-mod low chaos regimes M.Gobbin, L.Marrelli, L.Carraro,
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
相関.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
1 ヤマセに関する 2-3 の話題 (2) 川村 宏 東北大学大学院理学研究科 H 弘前大学.
Excelによる積分.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
正弦波.
+ Observational constraints on assisted k-inflation Tokyo University of Science Junko Ohashi and Shinji Tsujikawa.
Analog “ neuronal ” networks in early vision Koch and Yuille et al. Proc Academic National Sciences 1986.
Physics of fusion power Lecture 4: Cylindrical concepts.
US-Japan Workshop on Fusion Power Plants and Related Advanced Technologies with participations of EU and Korea ( Feb )
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
Non-disruptive MHD Dynamics in Inward-shifted LHD Configurations 1.Introduction 2.RMHD simulation 3.DNS of full 3D MHD 4. Summary MIURA, H., ICHIGUCHI,
大磁気嵐における サブオーロラ帯・中緯度対流パター ン: シミュレーションと DMSP 観測 海老原祐輔 (NIPR), M.-C. Fok (NASA’s GSFC) 謝辞: M.R.Hairston, D.G.Mitchell, P. C:son Brandt, and R.A.Wolf.
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
HES-HKS & KaoS meeting Toshi Gogami 5/July/2012. Contents SPL + ENGE Gogami spectra (Λ,Σ 0, 12 Λ B) Level 1.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Numerical Simulation on Flow Generated Resistive Wall Mode Shaoyan Cui (1,2), Xiaogang Wang (1), Yue Liu (1), Bo Yu (2) 1.State Key Laboratory of Materials.
Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Y.-D. Jia, Y. J. Ma, C.T. Russell, G.
(RESCEU &IPMU ) 横山順一 Inflaton φ slow rollover Reheating V[φ] BEGINNING?? END?? Λ But little is known about the beginning and end of inflation. Slow-roll.
The efficient sustainment of a stable, high-β spheromak: modeling By Tom Jarboe, To PSI-Center July 29, 2015.
Structure formation in Void Universes Osaka City University (OCU) Ryusuke Nishikawa collaborator Ken-ichi Nakao (OCU),Chul-Moon Yoo (YITP) ? 1/15.
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
1 MHD simulation on pellet plasmoid in LHD R. Ishizaki and N. Nakajima 6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas NIFS,
Plasma-wall interactions during high density operation in LHD
(National Institute for Fusion Science, Japan)
Analysis MEMO Magnetic field shield for S-2S TOF detector 9Mar2015 Toshiyuki Gogami.
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
Hybrid MHD-Gyrokinetic Simulations for Fusion Reseach G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA, Frascati, (Rome) Italy Introduction.
SLM 2/29/2000 WAH 13 Mar NBI Driven Neoclassical Effects W. A. Houlberg ORNL K.C. Shaing, J.D. Callen U. Wis-Madison NSTX Meeting 25 March 2002.
G ゼミ サーイ 4・14. テクスチャー流れ制度 描いた線の通りにテクスチャーの方向が 変わります。 理由:
Behaviour of Runaway Electrons during Injection of High Z Impurities/Gas Puffing in HT-7 S.Sajjad INSTITUTE OF PLASMA PHYSICS,HEFEI CHINA.
磁力管合体における磁気ヘリシティー保存性に関する 実験的検証 小野靖, 河森栄一郎 TS-3 & 4 グループ 東京大学・高温プラズマ研究センター.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Effects of Flow on Radial Electric Fields Shaojie Wang Department of Physics, Fudan University Institute of Plasma Physics, Chinese Academy of Sciences.
Cheng Zhang, Deng Zhou, Sizheng Zhu, J. E. Menard* Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei , P. R. China *
Koshi High School Oida Ryosuke Nakamura Kazuki.  Air resistance affects falling objects  When we can’t ignore air resistance, the faster the speed of.
1 Magnetic components existing in geodesic acoustic modes Deng Zhou Institute of Plasma Physics, Chinese Academy of Sciences.
Numerical Study on Ideal MHD Stability and RWM in Tokamaks Speaker: Yue Liu Dalian University of Technology, China Co-Authors: Li Li, Xinyang Xu, Chao.
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
© 2010 Cisco and/or its affiliates. All rights reserved.Presentation_IDCisco Confidential CISCO LEARNING CREDITS MANAGEMENT TOOL CLP 管理者 – ユーザ ロール 2011.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
A Simulator for the LWA Masaya Kuniyoshi (UNM). Outline 1.Station Beam Model 2.Asymmetry Station Beam 3.Station Beam Error 4.Summary.
松尾 善典 Based on YM-Tsukioka-Yoo [arXiv: ] YM-Nishioka [arXiv: ]
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
Introduction to Plasma Physics and Plasma-based Acceleration
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Evolution of the poloidal Alfven waves in 3D dipole geometry Jiwon Choi and Dong-Hun Lee School of Space Research, Kyung Hee University 5 th East-Asia.
RESISTIVE EMERGENCE OF UNDULATORY FLUX TUBES
Equilibrium and Stability
Study on Plasma Startup Scenario of Helical DEMO reactor FFHR-d1
Chapter 3 Plasma as fluids
Investigation of laser energy absorption by ablation plasmas
Kinetic Theory.
Ask Have ~ ? / How long ~ ? Answer these questions
Kinetic Theory.
MHD Simulation of Plasmoid-Induced-Reconnection in Solar Flares
H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3,
AXEL-2011 Introduction to Particle Accelerators
Presentation transcript:

Motion of the ablation cloud in torus plasmas R.Ishizaki, N.Nakajima and M.Okamoto National Institute for Fusion Science US-Japna Workshop PPPL, Princeton, NJ Mar , 2006

1.It is observed in LHD experiments that the ablation clouds are discretely created and drift to the low field side. We will make comprehensive understanding of those physics. 2.The ablation cloud dose not approach the core plasma even if the pellet is injected from the highest field side. It will be clarified what makes the difference between tokamak and LHD. LHD Pellet Cloud Tokamak High field sideLow field sideHighest field side Motion of the ablation cloud in torus plasmas BBB Cloud Pellet Drift to low field side Reconstructed cloud Exp. Injection speed : 10 3 m/s Drift speed : 10 4 m/s Discrete period : ~10  s

Topics : Drifting motion 1. P.B.Parks and L.R.Baylor, Phys. Rev. Lett. 94, (2005). Theory, no resistivity, constant B-field 2. R.Samtaney et al., Comput. Phys. Commun. 164, 220 (2004). Ideal MHD simulation, pellet is point source with ablation model 3. V.Rozhansky et al., Plasma Phys. Control. Fusion 46, 575 (2004). No resistivity, constant B-field, pellet is point source, mass and moment equations 4. H.R.Strauss and W.Park, Phys. Plasmas 7, 250 (2000). Ideal MHD simulation, pellet is plasmoid Topics : Discrete motion 5. P.B.Parks, Plasma Phys. Control. Fusion 38, 571 (1996). Theory, striation Recent works on motion of the ablation cloud. In order to make comprehensive understanding on drifting motion and discrete creation of ablation cloud, MHD simulation including ablation processes but not ablation model will be carried out. Ablation rate is not constant within creation time. Creation time of ablation cloud

1.Motion of high density plasmoid induced by heat flux in tokamak. 2.In order to clarify physics of the drifting motion, the motion is investigated in simple situation where an initial perturbation is uniform in toroidal direction and a bulk plasma is 1/R vacuum field and uniform pressure and not including heat flux. Roadmap. Future work Drifting motion in straight helical and LHD plasmas. Suggestion to obtain a good performance in LHD. Introduction of ablation with atomic processes from a solid pellet to a plasmoid. Comprehensive understanding of drifting motion and discrete creation of the cloud.

Geometry and basic equations. Perfect conductor Z R

Introdunction of the heat flux model enables the code to treat the ablation processes without any point sources. Maxwellian electron heat flux K 2 : Modified Bessel P.B.Parks, Phys. Plasmas 7, 1968 (2000). The model has already used in construction of the ablation model. n and T are assumed to be constant. The energy feedback from the plasmoid to n and T will be included in the future work.

Initial conditions Initial plasmoid Tokamak plasma R Z B2B2

The plasmoid is expanding along the B-field and simultaneously drifts to the low field side. Tokamak1/R vacuum field Uniform pressure

Drifting motion is induced by tire tube force. Drifting motion is disturbed by poloidal field in tokamak. Peak pressure reaches more than 100 times of bulk pressure.

Since 1/R vacuum field is stable according to linear theory, small perturbations have oscillation. On the other hand, large perturbations have different behavior because force balance is not satisfied. Conditions 1.1/R Vacuum field, uniform pressure 2.Initial perturbation, no heating source 3.Uniform in toroidal direction Oscillation Drift Essential points in drifting motion 1.Curvature of B-field 2.Large perturbation

Summary. 1.3D MHD code including the heat flux model is constructed in order to evaluate the motion of the plasmoid with ablation processes. 2.It is verified that the plasmoid is expanding along B-field and simultaneously drifts to the low field side. The drifting speed is about 0.05 Alfven velocity which is fairly comparable to experimental data. 3.The drifting motion is induced by tire tube force. On the other hand, the drifting motion is disturbed by poloidal field in tokamak. 4.If the perturbation is small, it has just oscillation. Then, the essential points in the motion are curvature of B-field and large perturbation. Future work 1.The motion of the plasmoid will be clarified in straight helical and LHD plasmas, and it will be clarified what makes the difference between tokamak and LHD on the motion of the plasmoid. 2.We will make comprehensive explanation of the drifting motion and discrete creation of the plasmoid by including ablation with atomic precesses.

The plasmoid is expanding along the B-field and simultaneously drifts to the low field side. Tokamak1/R vacuum field

Characteristic parameters. Cloud Bulk Exp. Injection speed : 10 3 m/s Drift speed : 10 4 m/s Discrete period : ~10  s R. Ishizaki et al, Phys. Plasmas 11, 4064 (2004).

アブレーション雲は低磁場側へ加速前に圧力の大きな振動が見られる。これは密 度に同期する一方で、速度とは半周期ずれている。