Soft motions of amorphous solids Matthieu Wyart
Amorphous solids structural glasses, granular matter, colloids, dense emulsions TRANSPORT: thermal conductivity few molecular sizes phonons strongly scattered FORCE PROPAGATION: L? ln (T) Behringer group L?
Glass Transition Heuer et. al e
Angle of Repose h Rearrangements Non-local Pouliquen, Forterre
Rigidity ``cage ’’ effect: Rigidity toward collective motions more demanding Z=d+1: local characteristic length ? Maxwell: not rigid
Vibrational modes in amorphous solids? Continuous medium: phonon = plane wave Density of states D(ω) N(ω) V -1 dω -1 Amorphous solids: - Glass: excess of low-frequency modes. Neutron scattering ``Boson Peak” (1 THz~10 K 0 ) Transport, … Disorder cannot be a generic explanation Nature of these modes? D(ω) ∼ ω 2 Debye D(ω)/ω 2 ω
Amorphous solid different from a continuous body even at L Unjammed, c P=0 Jammed, c P>0 Particles with repulsive, finite range interactions at T=0 Jamming transition at packing fraction c ≈ 0.63 : O’hern, Silbert, Liu, Nagel D(ω) ∼ ω 0 Crystal:plane waves :: Jamming:??
Jamming ∼ critical point: scaling properties z-z c = z~ ( c ) 1/2 Geometry: coordination Excess of Modes : same plateau is reached for different Define D(ω*)=1/2 plateau ω*~ z B 1/2 Relation between geometry and excess of modes ?? z c =2d
Rigidity and soft modes Rigid Not rigid soft mode Soft modes: R i R j n ij =0 for all contacts Maxwell: z rigid? # constraints: N c # degrees of freedom: Nd z=2N c /N 2d >d+1 global (Moukarzel, Roux, Witten, Tkachenko,... ) jamming: marginally connected z c =2d “isostatic” , Thorpe, Alexander
Isostatic: D( ω )~ ω 0 lattice: independent lines D(ω)~ ω 0
z>z c ** * = 1/ z ω*~ B 1/2 /L*~ z B 1/2
main difference: modes are not one dimensional * ~ 1/ z L < L*: continuous elastic description bad approximation Wyart, Nagel and Witten, EPL 2005 Random Packing
Ellenbroeck et.al 2006 Consistent with L* ~ z -1
** Extended Maxwell criterion f dE ~ k/L* 2 X 2 - f X 2 stability k/L* 2 > f z > (f/k) 1/2 ~ e 1/2 ~ ( c ) 1/2 X Wyart, Silbert, Nagel and Witten, PRE 2005 S. Alexander
Hard Spheres c 0.64 0.58 cri V(r) contacts, contact forces f ij Ferguson et al. 2004, Donev et al. 2004
discontinuous potential expand E? coarse-graining in time: Effective Potential f ij ( )? h ij =r ij -1 1 d: Z=∫π i dh ij e - f ij h ij /kT f ij =kT/ h Isostatic: Z=∫π i dh ij e - ph ij /kT p=kT/ Brito and Wyart, EPL 2006
V( r)= - kT ln(r-1) if contact V( r)=0 else r ij =|| - || G = ij V( r ij ) f ij =kT/ weak (~ z) relative correction throughout the glass phase
dynamical matrix dF= M d Vibrational modes z> C(p/B) 1/2 ~p -1/2 Linear Response and Stability Near and after a rapid quench: just enough contacts to be rigid system stuck in the marginally stable region
vitrification Ln( z) Ln(p) Rigid Unstable Equilibrium configuration vitrification
Activation cc Point defects? Collective mode?
Activation cc Brito and Wyart, J. phys stat, 2007
Granular matter : - Counting changes z c = d+1 -not critical z(p 0)≠ z c d+1< z <2d - z depends on and preparation Somfai et al., PRE 2007 Agnolin et Roux, PRE 2008
start h) h Hypothesis: (i) z > z_c (ii) Saturated contacts: z c.c. = f( /p)= f(tan ( (staron) (iii) Avalanche starts as z≈ z c.c ( start ) Consistent with numerics (2d, : (somfai, staron) z≈0.2 z c.c ( start ) ≈ 0.16
Finite h: z -> z +(a-a')/h z +(a-a')/h = f(tan h c 0 / [ c 1 tan z] wyart, arXiv Rigidity criterion with a fixed and free boundary Free boundary : z -> z +a'/h Fixed boundary : z -> z +a/h a'<a : effect > *2
Acknowledgement Tom Witten Sid Nagel Leo Silbert Carolina Brito
XiXi L L generate p~L d-1 soft modes independent (instead of 1 for a normal solid) argument: show that these modes gain a frequency ω ~L -1 when boundary conditions are restored. Then: D( ω) ~L d-1 /(L d L -1 ) ~L 0 ``just” rigid: remove m contacts…generate m SOFT MODES: High sensitivity to boundary conditions Isostatic: D( ω )~ ω 0 Wyart, Nagel and Witten, EPL 2005
Soft modes: extended, heterogeneous Not soft in the original system, cf stretch or compress contacts cut to create them Introduce Trial modes Frequency harmonic modulation of a translation, i.e plane waves ω L -1 D( ω )~ ω 0 (variational) Anomalous Modes R* i sin(x i π/L) R i x L
z > ( c ) 1/2 A geometrical property of random close packing maximum density stable to the compression c relation density landscape // pair distribution function g(r) 1 1+( c )/d z ~ g(r) dr stable g(r) ~(r-1) -1/2 Silbert et al., 2005
Glass Transition =G relaxation time Heuer et. al e
Vitrification as a ``buckling" phenomenum increases P increases L