ALICE O 2 | 2015 | Pierre Vande Vyvre O 2 Project Pierre VANDE VYVRE.

Slides:



Advertisements
Similar presentations
31/03/00 CMS(UK)Glenn Patrick What is the CMS(UK) Data Model? Assume that CMS software is available at every UK institute connected by some infrastructure.
Advertisements

High Level Trigger (HLT) for ALICE Bergen Frankfurt Heidelberg Oslo.
CWG10 Control, Configuration and Monitoring Status and plans for Control, Configuration and Monitoring 16 December 2014 ALICE O 2 Asian Workshop
T1 at LBL/NERSC/OAK RIDGE General principles. RAW data flow T0 disk buffer DAQ & HLT CERN Tape AliEn FC Raw data Condition & Calibration & data DB disk.
HLT - data compression vs event rejection. Assumptions Need for an online rudimentary event reconstruction for monitoring Detector readout rate (i.e.
High Level Trigger – Applications Open Charm physics Quarkonium spectroscopy Dielectrons Dimuons Jets.
23/04/2008VLVnT08, Toulon, FR, April 2008, M. Stavrianakou, NESTOR-NOA 1 First thoughts for KM3Net on-shore data storage and distribution Facilities VLV.
ALFA: The new ALICE-FAIR software framework
CHEP04 - Interlaken - Sep. 27th - Oct. 1st 2004T. M. Steinbeck for the Alice Collaboration1/20 New Experiences with the ALICE High Level Trigger Data Transport.
CHEP04 - Interlaken - Sep. 27th - Oct. 1st 2004T. M. Steinbeck for the Alice Collaboration1/27 A Control Software for the ALICE High Level Trigger Timm.
Timm M. Steinbeck - Kirchhoff Institute of Physics - University Heidelberg - DPG 2005 – HK New Test Results for the ALICE High Level Trigger.
CHEP03 - UCSD - March 24th-28th 2003 T. M. Steinbeck, V. Lindenstruth, H. Tilsner, for the Alice Collaboration Timm Morten Steinbeck, Computer Science.
Quality Control B. von Haller 8th June 2015 CERN.
ALICE Plenary | March 24, 2014 | Pierre Vande Vyvre O 2 Project : Status Report Pierre VANDE VYVRE 1.
Tom Dietel University of Cape Town for the ALICE Collaboration Computing for ALICE at the LHC.
FLP data flow – FLP prototype Filippo Costa ALICE O 2 9 th June 2015 WUHAN, CHINA.
ALICE O 2 Plenary | October 1 st, 2014 | Pierre Vande Vyvre O2 Project Status P. Buncic, T. Kollegger, Pierre Vande Vyvre 1.
ALICE O 2 Workshop Busan | December 16 th 2014 | Pierre Vande Vyvre O 2 Project : Status Report 4th ALICE ITS, MFT and O2 Asian workshop Pusan, South Korea,
The High-Level Trigger of the ALICE Experiment Heinz Tilsner Kirchhoff-Institut für Physik Universität Heidelberg International Europhysics Conference.
1 Status report on DAQ E. Dénes – Wigner RCF/NFI ALICE Bp meeting – March
ALICE O | Pierre Vande Vyvre O 2 Project :Upgrade of the online and offline computing Pierre VANDE VYVRE 1.
Use of GPUs in ALICE (and elsewhere) Thorsten Kollegger TDOC-PG | CERN |
The ALICE DAQ: Current Status and Future Challenges P. VANDE VYVRE CERN-EP/AID.
ALICE Upgrade for Run3: Computing HL-LHC Trigger, Online and Offline Computing Working Group Topical Workshop Sep 5 th 2014.
February 17, 2015 Software Framework Development P. Hristov for CWG13.
ALICE KISTI | June 19, 2014 | Pierre Vande Vyvre O 2 Project : Upgrade of the ALICE online and offline computing Pierre VANDE VYVRE / CERN – PH 1.
EGEE is a project funded by the European Union under contract IST HEP Use Cases for Grid Computing J. A. Templon Undecided (NIKHEF) Grid Tutorial,
Management of the LHCb DAQ Network Guoming Liu * †, Niko Neufeld * * CERN, Switzerland † University of Ferrara, Italy.
Status of Reconstruction in CBM
Next Generation Operating Systems Zeljko Susnjar, Cisco CTG June 2015.
Predrag Buncic, October 3, 2013 ECFA Workshop Aix-Les-Bains - 1 Computing at the HL-LHC Predrag Buncic on behalf of the Trigger/DAQ/Offline/Computing Preparatory.
Latest ideas in DAQ development for LHC B. Gorini - CERN 1.
P. Vande Vyvre – CERN/PH CERN – January Research Theme 2: DAQ ARCHITECT – Jan 2011 P. Vande Vyvre – CERN/PH2 Current DAQ status: Large computing.
CWG4 – The data model The group proposes a time frame - based data model to: – Formalize the access to data types produced by both detector FEE and data.
Pierre VANDE VYVRE for the O 2 project 15-Oct-2013 – CHEP – Amsterdam, Netherlands.
Predrag Buncic Future IT challenges for ALICE Technical Workshop November 6, 2015.
O 2 Project Roadmap P. VANDE VYVRE 1. O2 Project: What’s Next ? 2 O2 Plenary | 11 March 2015 | P. Vande Vyvre TDR close to its final state and its submission.
Filippo Costa ALICE DAQ ALICE DAQ future detector readout October 29, 2012 CERN.
ALICE Online Upgrade P. VANDE VYVRE – CERN/PH ALICE meeting in Budapest – March 2012.
Upgrade Letter of Intent High Level Trigger Thorsten Kollegger ALICE | Offline Week |
Predrag Buncic ALICE Status Report LHCC Referee Meeting CERN
Management of the LHCb DAQ Network Guoming Liu *†, Niko Neufeld * * CERN, Switzerland † University of Ferrara, Italy.
Predrag Buncic CERN ALICE Status Report LHCC Referee Meeting 01/12/2015.
Pierre VANDE VYVRE ALICE Online upgrade October 03, 2012 Offline Meeting, CERN.
CWG13: Ideas and discussion about the online part of the prototype P. Hristov, 11/04/2014.
LHCbComputing Computing for the LHCb Upgrade. 2 LHCb Upgrade: goal and timescale m LHCb upgrade will be operational after LS2 (~2020) m Increase significantly.
CWG9 Data Quality Monitoring, Quality Assurance and Visualization B. von Haller CERN.
ALICE Software Evolution Predrag Buncic. GDB | September 11, 2013 | Predrag Buncic 2.
Monitoring for the ALICE O 2 Project 11 February 2016.
ALICE O 2 project B. von Haller on behalf of the O 2 project CERN.
Workshop ALICE Upgrade Overview Thorsten Kollegger for the ALICE Collaboration ALICE | Workshop |
16 September 2014 Ian Bird; SPC1. General ALICE and LHCb detector upgrades during LS2  Plans for changing computing strategies more advanced CMS and.
Meeting with University of Malta| CERN, May 18, 2015 | Predrag Buncic ALICE Computing in Run 2+ P. Buncic 1.
P. Vande Vyvre – CERN/PH for the ALICE collaboration CHEP – October 2010.
ALICE O | Pierre Vande Vyvre O 2 Project :Upgrade of the ALICE online and offline computing Meeting with Warsaw University of Technology Pierre VANDE.
Predrag Buncic CERN Plans for Run2 and the ALICE upgrade in Run3 ALICE Tier-1/Tier-2 Workshop February 2015.
HTCC coffee march /03/2017 Sébastien VALAT – CERN.
Use of FPGA for dataflow Filippo Costa ALICE O2 CERN
O2 Project – Phase 2 Predrag Buncic
O2 Project Status Pierre Vande Vyvre
Predrag Buncic ALICE Status Report LHCC Referee Meeting CERN
evoluzione modello per Run3 LHC
Workshop Computing Models status and perspectives
Outline ALICE upgrade during LS2
ALICE – First paper.
Commissioning of the ALICE HLT, TPC and PHOS systems
Dagmar Adamova (NPI AS CR Prague/Rez) and Maarten Litmaath (CERN)
ALICE Computing Model in Run3
ALICE Computing Upgrade Predrag Buncic
Computing at the HL-LHC
Presentation transcript:

ALICE O 2 | 2015 | Pierre Vande Vyvre O 2 Project Pierre VANDE VYVRE

ALICE O 2 | 2015 | Pierre Vande Vyvre Online and offline computing (Runs 1 and 2) 2 Compressed data Information Knowledge Offline computing  Extract the particle properties from raw data.  Store the results for analysis.  Produce knowledge by analyzing the information Offline computing  Extract the particle properties from raw data.  Store the results for analysis.  Produce knowledge by analyzing the information Raw data OnlineOffline Triggering and online computing  Fast inspection of all interactions.  Reduce rate by event selection.  Reduce data volume by compressing the selected events.  Store the compressed data. Triggering and online computing  Fast inspection of all interactions.  Reduce rate by event selection.  Reduce data volume by compressing the selected events.  Store the compressed data. O (kHz) O (100 Hz)

ALICE O 2 | 2015 | Pierre Vande Vyvre Physics programme and data taking scenarios 3 YearSystem√s NN L int N collisions (TeV)(pb -1 )(nb -1 ) 2020 pp · Pb-Pb · pp · Pb-Pb · pp · pp5.564 · pp · Pb-Pb · pp · Pb-Pb · p-Pb pp · Pb-Pb · 10 10

ALICE O 2 | 2015 | Pierre Vande Vyvre Requirements after LS2 1.After LS2, LHC will deliver min bias Pb-Pb at 50 kHz –100 x more data than today 2.Physics topics addressed by ALICE upgrade –Very small signal-to-noise ratio and large background –Triggering techniques very inefficient if not impossible –Needs large statistics 3.Support for continuous read-out (TPC) –Detector read-out triggered or continuous by Time Frames of ~ 20ms 4.Running scenarios –Goal: 13 nb −1 for Pb–Pb collisions at 5.5 TeV (minimum bias)  Too much data to be stored  Compress data intelligently by processing it online 4

ALICE O 2 | 2015 | Pierre Vande Vyvre O 2 Project Requirements for Run 3 (2020) 5 -Handle >1 TByte/s detector input -Online reconstruction to reduce data volume -Common hw and sw system developed by the DAQ, HLT, Offline teams -Handle >1 TByte/s detector input -Online reconstruction to reduce data volume -Common hw and sw system developed by the DAQ, HLT, Offline teams O2O2

ALICE O 2 | 2015 | Pierre Vande Vyvre Paradigm shift for Run 3 6 Compressed data Information Knowledge ALICE computing  Optimize the distributed analysis.  Produce knowledge by analyzing the information ALICE computing  Optimize the distributed analysis.  Produce knowledge by analyzing the information Raw data 1 common computing environment ALICE computing  Read-out all interactions.  Reduce data volume by extracting the particle properties and compressing the events.  Store only processed data. ALICE computing  Read-out all interactions.  Reduce data volume by extracting the particle properties and compressing the events.  Store only processed data. 50 kHz

ALICE O 2 | 2015 | Pierre Vande Vyvre Design strategy Iterative process: design, benchmark, model, prototype 7 Design Model Prototype Technology benchmarks

ALICE O 2 | 2015 | Pierre Vande Vyvre Functional Requirements 8 -Functional requirements of the O2 system -Data fully compressed before data storage -Reconstruction with calibrations of better quality -Grid capacity will evolve much slower than the ALICE data volume -Data archival of reconstructed events of the current year to keep Grid networking and data storage within ALICE quota -Needs for local data storage higher than originally anticipated Asynchronous and refined calibration, reconstruction Event extraction Quality control Compressed Sub-Time Frames Continuous and triggered streams of raw data Data aggregation Synchronous global reconstruction, calibration and data volume reduction Quality control Data storage and archival Compressed Time Frames Reconstructed events Compressed Time Frames Readout, split into Sub-Time frames, and aggregation Local pattern recognition and calibration Local data compression Quality control Detectors electronics 1.1 TB/s 90 GB/s

ALICE O 2 | 2015 | Pierre Vande Vyvre Hardware Architecture 9 Detectors 8000 Read-out Links 250 FLPs First Level Processors 1500 EPNs Event Processing Nodes Input: 250 ports Output : 1500 ports 1.2 TB/s Switching Network 500 GB/s 90 GB/s Storage 34 Storage Servers Storage Network Input: 1500 ports Output : 34 ports

ALICE O 2 | 2015 | Pierre Vande Vyvre Data flow & processing (1) O 2 /T0/T1 FLPs EPNs FLPs Detectors electronics Detector data samples interleaved with synchronized heartbeat triggers Buffering TPC Detector reconstruction e.g. track finding Raw data input Data Reduction 0 e.g. clustering Local processing Time Frame building Frame dispatch Global processing TRD Sub-Time Frames Partially compressed sub-Time Frames Full Time Frames Compressed Time Frames Data Reduction 1 … Trigger and clock Calibration 0 on local data, ie. partial detector Calibration 1 on full detectors e.g. space charge distortion T0/T1 Archive Time slicing O(100) O(1000) Local aggregation Storage Quality Control Sub-Time Frames Time Frames Compressed Time Frames AOD QC Tagging Synchronous QC data ITS … CTF AOD Storage Load balancing & dataflow regulation

ALICE O 2 | 2015 | Pierre Vande Vyvre Data flow & processing (2) O 2 /T0/T1 Reconstruction passes and event extraction Compressed Time Frames T0/T1 Archive Analysis Storage T2 Simulation CTF Simulation AODO(10) Condition & Calibration Database Quality Control Sub-Time Frames Time Frames Compressed Time Frames AOD CCDB Objects QC Asynchronous QC data CTF AOD Event Summary Data Analysis Object Data Analysis Facilities Storage Histograms, trees O(1) Analysis AOD Storage Reconstruction Event building AOD extraction Compressed Time Frames O 2 /T0/T1 O(1) Event extraction Tagging Global reconstruction QC ESD, AOD AOD extraction Calibration 2 ESD, AOD

ALICE O 2 | 2015 | Pierre Vande Vyvre Calibration and reconstruction flow 12 EPN: synchronous asynchronousAll FLPs Raw data Local Processing E.g. Clusterization Calibration Detector Reconstruction CTF AOD Step 1Step 2Step 3Step 4 Matching procedures Final calibration and 2nd matching Final matching, PID, Event extraction… Step 0 FPGA GPU CPU

ALICE O 2 | 2015 | Pierre Vande Vyvre Quality control 13 Data storage Dataflow Quality Control System Data Collection Generation of Monitoring Objects Quality Assessment Storage Visualization Raw data Reconstructed data Condition & Calibration API Access

ALICE O 2 | 2015 | Pierre Vande Vyvre Control, configuration and monitoring 14 Control, Configuration and Monitoring LHCTrigger Status/ Monitoring data Status DCSGrid Commands/ Configuration data Status Commands/ Configuration data Status/ Monitoring data Grid Jobs Status Commands

ALICE O 2 | 2015 | Pierre Vande Vyvre Technology: Input/Output with PCI Express 15 PCIe Gen2 -Up to 3.4 GB/s -Device independent from each other PCIe Gen3 -Up to 6 GB/s -FPGA-based DMA controller

ALICE O 2 | 2015 | Pierre Vande Vyvre Technology: hw acceleration with FPGA and GPU 16 FPGA -Acceleration for TPC cluster finder versus a standard CPU -25 times faster than the software implementation GPU -TPC Track Finder based on the Cellular Automaton principle to construct track seeds. -It is implemented for OpenMP (CPU), CUDA (Nvidia GPU), and OpenCL (AMD GPU). -1 GPU replaces 30 CPU cores and uses 3 for I/O

ALICE O 2 | 2015 | Pierre Vande Vyvre Facility design 17

ALICE O 2 | 2015 | Pierre Vande Vyvre Facility design Network layout 2 18 FLP … EPN … 10 Gb/s FLP … EPN … 10 Gb/s … Leaf Switch 1 Leaf Switch 7 Cluster 1 out of 4 40/56 Gb/s

ALICE O 2 | 2015 | Pierre Vande Vyvre Facility design Network layout 3 19 FLP EPN FLP EPN /56 Gb/s SEPN 1 10 Gb/s 1 EPN Gb/s 50 FLP X 40/56 Gb/s 50 2 X 40/56 Gb/s

ALICE O 2 | 2015 | Pierre Vande Vyvre Simulation: Scalability 20 Network layout 2 -Based on Eth. Technology -Scales up to 90 kHz Network layout 2 -Based on IB Technology -Scales up to 140 kHz

ALICE O 2 | 2015 | Pierre Vande Vyvre Software framework ALFA –Prototype developed in common by experiments at FAIR and ALICE –Base on the ZeroMQ package –Data transport Performance (see plot) –Dynamic Deployment System ALFA devices (FLPs, EPNs and one sampler). Propagated about 77 millions key-value < 200 seconds 21

ALICE O 2 | 2015 | Pierre Vande Vyvre O 2 Project PLs: P. Buncic, V. Lindenstruth, P. Vande Vyvre PLD:.M. Krzewicki, T. Kollegger Computing Working Group(CWG)Chair 1.ArchitectureS. Chapeland 2.Tools & ProceduresA. Telesca 3.DataflowT. Breitner 4.Data ModelA. Gheata 5.Computing PlatformsM. Kretz 6.CalibrationC. Zampolli 7.Reconstruction R. Shahoyan 8.Physics SimulationA. Morsch 9.QA, DQM, VisualizationB. von Haller 10.Control, Configuration, MonitoringV. Chibante 11.Software LifecycleA. Grigoras 12.HardwareH. Engel 13.Software frameworkP. Hristov Editorial Committee L. Betev, P. Buncic, S. Chapeland, F. Cliff, P. Hristov, T. Kollegger, M. Krzewicki, K. Read, J. Thaeder, B. von Haller, P. Vande Vyvre Physics requirement chapter: Andrea Dainese 22 Project Organization O 2 CWGs

ALICE O 2 | 2015 | Pierre Vande Vyvre O 2 Project Institutes 23

ALICE O 2 | 2015 | Pierre Vande Vyvre Schedule (1) 24

ALICE O 2 | 2015 | Pierre Vande Vyvre Schedule (2) 25

ALICE O 2 | 2015 | Pierre Vande Vyvre ALICE O2 Technical Design Report 26