6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G. Pellegrini, R. Bates, C. Fleta, M. Lozano, M. Ullán Semiconductor radiation detectors group Institut de Microelectrònica de Barcelona Centre Nacional de Microelectrònica - CSIC Spain 3rd March 2011 Simulations of 3D-DDTC Silicon detectors Simulations of 3D-DDTC Silicon detectors
6th Trento Workshop on Advanced Silicon Radiation Detectors2/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Blocks Columns Increments Transitions Hypertext 1 1 Motivation 2 2 Simulation: Layout and parameters 3 3 Simulation: Electric field 4 4 Simulation: Charge multiplication 5 5 Conclusions/Future work
6th Trento Workshop on Advanced Silicon Radiation Detectors3/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Blocks Columns Increments Transitions Hypertext 1 1 Motivation 2 2 Simulation: Layout and parameters 3 3 Simulation: Electric field 4 4 Simulation: Charge multiplication 5 5 Conclusions/Future work
6th Trento Workshop on Advanced Silicon Radiation Detectors4/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) 3D-DDTC measurements Irradiated 3D detectors present Charge multiplication effect: Objective Develop 3D detectors with Charge multiplication effect for low Bias voltages before irradiation by changing the bulk doping concentration. above 150V for p-type above 260V for n-type [M. Köhler, University of Freiburg, Germany]
6th Trento Workshop on Advanced Silicon Radiation Detectors5/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Blocks Columns Increments Transitions Hypertext 1 1 Motivation 2 2 Simulation: Layout and parameters 3 3 Simulation: Electric field 4 4 Simulation: Charge multiplication 5 5 Conclusions/Future work
6th Trento Workshop on Advanced Silicon Radiation Detectors6/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Geometry - pitch: 80 µm - wafer thickness: 285 µm - column depth: 250 µm - column diameter: 10 µm Doping levels - n + columns: cm -3 - p + columns: cm -3 - p-stop: cm -3 - Si/SiO 2 charge: 5·10 11 cm -2 P-type p+p+ p+p+ p+p+ p+p+ n+n+
6th Trento Workshop on Advanced Silicon Radiation Detectors7/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Geometry - pitch: 80 µm - wafer thickness: 285 µm - column depth: 250 µm - column diameter: 10 µm Doping levels - n + columns: cm -3 - p + columns: cm -3 - Si/SiO 2 charge: 5·10 11 cm -2 N-type n+n+ n+n+ n+n+ n+n+ p+p+
6th Trento Workshop on Advanced Silicon Radiation Detectors8/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) PhysicsModel Mobility Doping dependance, High Electric field saturation Generation and Recombination Doping dependant Shockley-Read-Hall Generation recombination, Surface recombination model Impact ionization University of Bologna impact ionization model Tunneling Band-to-band tunneling, Hurkx trap- assisted tunneling Oxide physics Oxide as a wide band gap semiconductor for mips (irradiated), interface charge accumulation Radiation model Acceptor/Donor states in the band gap (traps) [M. Benoit, Laboratoire de l’accélérateur linéar (LAL), Orsay, France]
6th Trento Workshop on Advanced Silicon Radiation Detectors9/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Blocks Columns Increments Transitions Hypertext 1 1 Motivation 2 2 Simulation: Layout and parameters 3 3 Simulation: Electric field 4 4 Simulation: Charge multiplication 5 5 Conclusions/Future work
6th Trento Workshop on Advanced Silicon Radiation Detectors10/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Electric Field (p-type) n+n+ p+p+
6th Trento Workshop on Advanced Silicon Radiation Detectors11/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Electric Field (n-type) n+n+ p+p+
6th Trento Workshop on Advanced Silicon Radiation Detectors12/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Using PowerPoint to Typeset Nice Presentations Blocks Columns Increments Transitions Hypertext 1 1 Motivation 2 2 Simulation: Layout and parameters 3 3 Simulation: Electric field 4 4 Simulation: Charge multiplication 5 5 Conclusions/Future work
6th Trento Workshop on Advanced Silicon Radiation Detectors13/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Charge multiplication Compromise between low full depletion voltages and high enough voltages for Charge multiplication V = 150 V for both n and p-type ρ n = 100 Ω·cm ρ p = 200 Ω·cm MIP electrons Charge multiplication
6th Trento Workshop on Advanced Silicon Radiation Detectors14/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Charge multiplication in the irradiated 3D model Doping concentration: N eff = 7·10 11 cm -3 (p-type) Fluence: Φ eq = 2·10 15 n eq /cm 2 Electric field compatible with Charge multiplication for 250V Unexpected reduction of the charge collected for 250V !! Interface charge: Q ox = 5·10 11 cm -2
6th Trento Workshop on Advanced Silicon Radiation Detectors15/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Using PowerPoint to Typeset Nice Presentations Blocks Columns Increments Transitions Hypertext 1 1 Motivation 2 2 Simulation: Layout and parameters 3 3 Simulation: Electric field 4 4 Simulation: Charge multiplication 5 5 Conclusions/Future work
6th Trento Workshop on Advanced Silicon Radiation Detectors16/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Conclusions Future work Obtained charge multiplication effect in both n and p-type substrates without irradiation Complete the study on multiplication effect for different doping levels at different biasing voltages Solve problems of charge multiplication in the irradiated 3D model.