Neutron Identification with ECAL  Sergey Kiselev, ITEP Moscow, for the ECAL group  Motivation  Input info  Signal parameters  Preshower – 1 GeV/c.

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

Particle identification in ECAL Alexander Artamonov, Yuri Kharlov IHEP, Protvino CBM collaboration meeting
P. Gay Energy flow session1 Analytic Energy Flow F. Chandez P. Gay S. Monteil CALICE Coll.
Ties Behnke, Vasiliy Morgunov 1SLAC simulation workshop, May 2003 Pflow in SNARK: the next steps Ties Behnke, SLAC and DESY; Vassilly Morgunov, DESY and.
Algorithms and Methods for Particle Identification with ALICE TOF Detector at Very High Particle Multiplicity TOF simulation group B.Zagreev ACAT2002,
D 0  K -,  + reconstruction with CBM STS detector I.Vassiliev (GSI) CBM collaboration meeting 06-Oct-04 Simulation tools (cbmroot) & geometry Signal.
Status of calorimeter simulations Mikhail Prokudin, ITEP.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
Workshop of European Research Group on Ultrarelativistic Heavy Ion Physics, Dubna-ITEP S.Kiselev 1 Direct photons. Generators aspects.  Sergey.
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
St. Petersburg State University. Department of Physics. Division of Computational Physics. COMPUTER SIMULATION OF CURRENT PRODUCED BY PULSE OF HARD RADIATION.
IFluka : a C++ interface between Fairroot and Fluka Motivations Design The CBM case: –Geometry implementation –Settings for radiation studies –Global diagnosis.
Radiation levels in CBM Radiation effects iFluka (Fluka C++ interface to CbmRoot) Fluka Geometry Models Results Conclusion.
IFluka : a C++ interface between Fairroot and Fluka Motivations Design The CBM case: –Geometry implementation –Settings for radiation studies –Global diagnosis.
Simulation Studies for a Digital Hadron Calorimeter Arthur Maciel NIU / NICADD Saint Malo, April 12-15, 2002 Introduction to the DHCal Project Simulation.
CALORIMETER system for the CBM detector Ivan Korolko (ITEP Moscow) CBM Collaboration meeting, October 2004.
Ooo Performance simulation studies of a realistic model of the CBM Silicon Tracking System Silicon Tracking for CBM Reconstructed URQMD event: central.
CBM Software Workshop for Future Challenges in Tracking and Trigger Concepts, GSI, 9 June 2010 Volker Friese.
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
Experience With CBM Muon Simulation Partha Pratim Bhaduri.
S. Belogurov, ITEP, Moscow CBM Collaboration meeting, Split, CBM beam pipe and integration inside the Magnet Status report Sergey Belogurov,
Hongyu Fu, Trigger group The Monte Carlo for Trigger Design of BES3 Scintillating Fibre BEMC Outline: Introduction to BES3 Scin-fibre BEMC Trigger.
EMCal in ALICE Norbert Novitzky 1. Outline How Electro-Magnetic Calorimeters works ? Physics motivation – What can we measure with Emcal ? – Advantages.
Status of CBM muon studies I.Vassiliev, S.Gorbunov, I. Kisel and A.Kiseleva 16-Oct-06 Motivation Simulation tools cbmroot2 v06 Signal and background simulations.
Simulation Studies for a Digital Hadron Calorimeter Arthur Maciel NIU / NICADD Saint Malo, April 12-15, 2002 Introduction to the DHCal Project Simulation.
1 Lead glass simulations Eliane Epple, TU Munich Kirill Lapidus, INR Moscow Collaboration Meeting XXI March 2010 GSI.
Standalone FLES Package for Event Reconstruction and Selection in CBM DPG Mainz, 21 March 2012 I. Kisel 1,2, I. Kulakov 1, M. Zyzak 1 (for the CBM.
Optimization of the Silicon Tracking System (STS) layout and beam pipe configuration for the CBM experiment. Andrey Chernogorov, Sergey Belogurov, ITEP,
1 Open charm simulations ( D +, D 0,  + c ) Sts geometry: 2MAPS +6strip (Strasbourg geo) or 2M2H4S (D+ and D - at 25AGeV); TOOLS: signal (D +  K - 
R&D Studies of a Lead-Scintillating Fiber Calorimeter as a STAR Forward Detector Prashanth Shanmuganathan (for FCal group at STAR)  Physics and R&D goals.
D. Dutta 13th CBM Collaboration Meeting 1 Dipanwita Dutta Much Segmentation Study: A Flexible Scheme.
FIMCMS, 26 May, 2008 S. Lehti HIP Charged Higgs Project Preparative Analysis for Background Measurements with Data R.Kinnunen, M. Kortelainen, S. Lehti,
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
G4 Validation meeting (5/11/2003) S.VIRET LPSC Grenoble Photon testbeam Data/G4 comparison  Motivation  Testbeam setup & simulation  Analysis & results.
CBM ECAL simulation status Prokudin Mikhail ITEP.
Hadron production in C+C at 1 and 2 A GeV analysis of data from experiments NOV02 and AUG04 for high resolution tracking (Runge-Kutta tracks) Pavel Tlustý,
Performance simulations with a realistic model of the CBM Silicon Tracking System Silicon tracking for CBM Number of integration components Ladders106.
Some remarks on (mis)identification: separation of pions from electrons Answer the question of the feasibility of p_bar p  e + e - Answer the question.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
Photon reconstruction and matching Prokudin Mikhail.
Evgeny Kryshen (PNPI) Mikhail Ryzhinskiy (SPbSPU) Vladimir Nikulin (PNPI) Detailed geometry of MUCH detector in cbmroot Outline Motivation Realistic module.
ITEP meeting S.Kiselev1 RQMD: p+C  γ X at T=5.13 GeV 2-arms FLINT  Sergey Kiselev, ITEP Moscow  Acceptance  Input info  Multiplicities 
STS Radiation Environment 11 th CBM Collaboration Meeting GSI, February 2008 Radoslaw Karabowicz GSI.
Feasibility of J/ψ studies by MPD detector Alla Maevskaya, Alexei Kurepin INR RAS Moscow NICA Roundtable Workshop 11 September 2009.
J/psi trigger status Alla Maevskaya INR RAS 11 March 2009 CBM Collaboration meeting.
Muon detection in the CBM experiment at FAIR Andrey Lebedev 1,2 Claudia Höhne 1 Ivan Kisel 1 Anna Kiseleva 3 Gennady Ososkov 2 1 GSI Helmholtzzentrum für.
13-jan-2014 Some results for a GEM-based central detector A.Zinchenko, V.Vasendina, M.Kapishin VBLHEP, JINR, Dubna, Russia.
Ties Behnke: Event Reconstruction 1Arlington LC workshop, Jan 9-11, 2003 Event Reconstruction Event Reconstruction in the BRAHMS simulation framework:
CBM-Meet, VECC July 21, Premomoy Ghosh CBM – MUCH Simulation for Low-mass Vector Meson Work done at GSI during June 2006.
D 0 reconstruction: 15 AGeV – 25 AGeV – 35 AGeV M.Deveaux, C.Dritsa, F.Rami IPHC Strasbourg / GSI Darmstadt Outline Motivation Simulation Tools Results.
Realistic detector layout for MUCH system M.Ryzhinskiy, SPbSPU CBM Collaboration Meeting September 25-28, 2007, Dresden, Germany.
Experience from analyzing pp collisions in ALICE Konstantin Mikhaylov ITEP, Moscow K.Mikhaylov, ITEP Alice Week, CERN October
7/13/2005The 8th ACFA Daegu, Korea 1 T.Yoshioka (ICEPP), M-C.Chang(Tohoku), K.Fujii (KEK), T.Fujikawa (Tohoku), A.Miyamoto (KEK), S.Yamashita.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
Giuseppe Ruggiero CERN Straw Chamber WG meeting 07/02/2011 Spectrometer Reconstruction: Pattern recognition and Efficiency 07/02/ G.Ruggiero - Spectrometer.
Hadron production in C+C at 1 and 2 A GeV analysis of data from experiments NOV02 and AUG04 for high resolution tracking (Runge-Kutta tracks) Pavel Tlustý,
PWG4 meeting, CERN S.Kiselev 1 Jet hadrochemistry. PYTHIA vs HERWIG Sergey Kiselev, ITEP Moscow for the TOF group Motivation Input info/assumptions.
MONTE CARLO TRANSPORT SIMULATION Panda Computing Week 2012, Torino.
 reconstruction and identification in CMS A.Nikitenko, Imperial College. LHC Days in Split 1.
Feasibility of neutron asymmetry measurements with NICA MPD K
Multi-Strange Hyperons Triggering at SIS 100
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
CBM beam pipe current status
I. Vassiliev, V. Akishina, I.Kisel and
Feasibility of   γγ study with ECAL
Detector Optimization using Particle Flow Algorithm
MUC simulation and reconstruction
Physics event timing Use Pythia to generate hadronic decays at 125 GeV
CMS-Bijing weekly meeting
Sheraton Waikiki Hotel
Presentation transcript:

Neutron Identification with ECAL  Sergey Kiselev, ITEP Moscow, for the ECAL group  Motivation  Input info  Signal parameters  Preshower – 1 GeV/c  Preshower – 4 GeV/c  Preshower – 8 GeV/c  ECAL – 1 GeV/c  ECAL – 4 GeV/c  ECAL – 8 GeV/c  Conclusion and next steps CBM Simulation Meeting S.Kiselev ITEP 1

Motivation  ~2400 particles enter to ECAL, ~1100 charged, ~1300 neutrals. ~25% of neutrals are neutrons. 70% of neutrals have p<1 GeV/c. Prim.Second.sum (,p<1 GeV/c) 401(220)628(600)1029(820) n(n,p<1 GeV/c)107(3)194(140)301(143)  Σ -  n π -, Σ +  n π +, Θ +  K + n CBM Simulation Meeting S.Kiselev ITEP 2

Input info  CbmRoot package (April 2005), Geant3  Realistic ECAL geometry (class CbmEcalV1). - Preshower: 1.5X0 Pb + 1cm scin. - ECAL: 25X0 Pb ( cm layers) + scin. ( cm layers). - Transverse granularity: ~10 5 3x3 cm 2 cells. - Summing procedure of Eloss in a cell for a track. MCPoint parameters (x,…,px,…,time,…) correspond to the first entrance into the cell.  “Test” tracks n,  at θ =6 0, φ=45 0 with p=1, 4, 8 GeV/c were used as input CBM Simulation Meeting S.Kiselev ITEP 3

Signal parameters  Aim: to find signal parameters discriminate n/ at any momentum.  Signal -> 3x3 cluster: the cell with maximal E scin + 8 nearest cells.  Parameters of the 3x3 cluster: - number of “fired” cells, N - energy of these cells, E - cluster form: (central cell energy)/E - cluster time: (central cell time, t) – (light time to front of this cell, t 0 ) CBM Simulation Meeting S.Kiselev ITEP 4

Preshower - 1 GeV/c CBM Simulation Meeting S.Kiselev ITEP 5

Preshower - 4 GeV/c CBM Simulation Meeting S.Kiselev ITEP 6

Preshower - 8 GeV/c CBM Simulation Meeting S.Kiselev ITEP 7

ECAL - 1 GeV/c CBM Simulation Meeting S.Kiselev ITEP 8

ECAL - 4 GeV/c CBM Simulation Meeting S.Kiselev ITEP 9

ECAL - 8 GeV/c CBM Simulation Meeting S.Kiselev ITEP 10

Conclusion and next steps  Preshower/ECAL time is probably most effective variable to discriminate n/ .  Play with preshower: 2.0X0, 2.5X0 of Pb  UrQMD events: 1 central Au+Au event at 25 AGeV takes - ~ 6 min. of CPU (2 Mhz) - ~ 4 Mb output file _ CBM Simulation Meeting S.Kiselev ITEP 11

Preshower - p dependance pw%w% N cells in clust. E scin,MeV in clust. E max % E scin t-t 0, ns n1181.3±0.6 5±694±13 20±7 n4231.5±0.9 11±1590±173.6±2.5 n8322.0±1.5 18±2886±201.3±1.2  ±0.8 9±694±120.1±0.1  ±0.9 14±1194±100.1±0.2  ±0.9 15±1394±100.2± CBM Simulation Meeting S.Kiselev ITEP 12

ECAL - p dependance pw%w% N cells in clust. E scin,MeV in clust. E max % E scin t-t 0, ns n ±1.6 17±1376±20 18±3 n ±1.8113±4957±181.8±0.6 n ±1.6197±9646±150.9±0.4  ±1.2 79±856±100.1±0.1  ±0.8324±1550±80.1±0.1  ±0.4654±2246±70.1± CBM Simulation Meeting S.Kiselev ITEP 13