Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.

Slides:



Advertisements
Similar presentations
Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania MEASURING THE UNIVERSE.
Advertisements

Observing Dark Energy SDSS, DES, WFMOS teams. Understanding Dark Energy No compelling theory, must be observational driven We can make progress on questions:
Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
Upper limits on neutrino masses from cosmology: new results Øystein Elgarøy (Institute of theoretical astrophysics, University of Oslo) Collaborator: Ofer.
Cosmological Information Ue-Li Pen Tingting Lu Olivier Dore.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
1 What is the Dark Energy? David Spergel Princeton University.
Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Astroparticle physics 4. Astroparticles: rulers of the Universe? (or almost...) Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
Neutrinos and the large scale structure
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Observational Probes of Dark Energy Timothy McKay University of Michigan Department of Physics Observational cosmology: parameters (H 0,  0 ) => evolution.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Cosmic collisions: dark matter, dark energy & inflation Max Tegmark, Penn/MIT.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
Constraining Cosmology with Peculiar Velocities of Type Ia Supernovae Cosmo 2007 Troels Haugbølle Institute for Physics & Astronomy,
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
The coordinated growth of stars, haloes and large-scale structure since z=1 Michael Balogh Department of Physics and Astronomy University of Waterloo.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
Ignacy Sawicki Université de Genève Understanding Dark Energy.
Subaru Galaxy Surveys: Hyper-Suprime Cam & WFMOS (As an introduction of next talk by Shun Saito) Masahiro Takada (Tohoku Univ., Sendai, Japan) Sep
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
More on the A-Word Credit: Anthony Aguirre, Martin Rees, Frank Wilczek Blame: Max Tegmark.
Large-Scale Structure & Surveys Max Tegmark, MIT.
Simulations by Ben Moore (Univ. of Zurich)
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
The Cosmic Microwave Background
Massive Neutrinos and Cosmology Ofer Lahav University College London * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from redshift.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Mapping our Universe for Precision Cosmology Max Tegmark, MIT.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
Cheng Zhao Supervisor: Charling Tao
Cosmology That part of astronomy which deals with the nature of the universe as a whole.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Cosmology With The Lyα Forest
9/17/2018 Cosmology from Space Max Tegmark, MIT.
Precision cosmology and neutrinos
The History of the Universe in 60 Minutes
Springel, Frenk & White 2006, Nature, 440, 11
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
Cosmology from Large Scale Structure Surveys
Inflation and the cosmological density perturbation
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Measurements of Cosmological Parameters
Presentation transcript:

Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 What have we learned so far?

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Flyabout + SDSS movie

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Brief History of the Universe 400

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy To 0th order: Cosmological functions   (z), G(z,k), P s (k), P t (k) H(z) 400

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Cosmological functions H(z) P(k,z) To 1st order: 400

SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, H = dlna/dt, H 2   Assumes k=0 Vanilla rules OK!

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Measuring clustering (That’s where the neutrino signal is)

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom z = 1000

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom z = 2.4 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom z = 0.8 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001 z = 0

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Measuring cosmological parameters

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Neutrinos (Øisten Elgarøy will give much more detail on this on Thursday)

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom How neutrinos suppress cosmic fluctuation growth If all the matter can cluster:  a Net growth until today: a today /a primordial ≈ 4700 p ≈ 4700 e -4f Power suppression: P(k)/P(k) primordial ≈ e -8f  f ≈ ∑ m i /94.4 eV  dm ≈ ∑ m i /12 eV, So 1 eV cuts power in half. If only a fraction  * can cluster:  a p, where p=[(1+24  * )-1]/4≈  * 3/5 ≈ (1-f ) 3/5 (Bond, Efstathiou & Silk 1980) Distinguish neutrinos from dark energy by time and scale dependence.

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB + P(k)

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB + Ly  F + P(k)

THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom Now: WMAP CMB + SDSS gals & Ly  F: ∑ m i < 0.4 eV E.g., Hu & Tegmark, astro-ph/ , Hu, astro-ph/ , Hannestad et al, astro-ph/ Planck CMB + LSST lensing:  (∑ m i ) ~ 0.04 eV Seljak et al, astro-ph/ , Goobar et al, astro-ph/ Spergel et al, astro-ph/ Seljak et al, astro-ph/ (< 0.17 eV) Future:

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Hata Neutrin os Cosmo progress so far

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Hata Neutrin os Inverted Normal Lesgourges & Pastor, astro-ph/

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Galaxy clustering progress

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Why are LRGs so useful?

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 SDSS sphere anim

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/

LSS Our observable universe

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Quasars

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS LRG’s

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Common galaxies

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Common gals: too dense Quasars: too sparse LRG’s: just right! Why LRG’s are “Goldilocks galaxies”:

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS LRG’s Also more strongly clustered

Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Why LRG’s are “just right”: LRG’s have more statistical power than 2 million regular gals (Eisenstein et al 2005)