Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 What have we learned so far?
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Flyabout + SDSS movie
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Brief History of the Universe 400
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy To 0th order: Cosmological functions (z), G(z,k), P s (k), P t (k) H(z) 400
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Cosmological functions H(z) P(k,z) To 1st order: 400
SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, H = dlna/dt, H 2 Assumes k=0 Vanilla rules OK!
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Measuring clustering (That’s where the neutrino signal is)
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom z = 1000
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom z = 2.4 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom z = 0.8 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001 z = 0
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, par movies Ly LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, par movies Ly LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Measuring cosmological parameters
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Neutrinos (Øisten Elgarøy will give much more detail on this on Thursday)
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom How neutrinos suppress cosmic fluctuation growth If all the matter can cluster: a Net growth until today: a today /a primordial ≈ 4700 p ≈ 4700 e -4f Power suppression: P(k)/P(k) primordial ≈ e -8f f ≈ ∑ m i /94.4 eV dm ≈ ∑ m i /12 eV, So 1 eV cuts power in half. If only a fraction * can cluster: a p, where p=[(1+24 * )-1]/4≈ * 3/5 ≈ (1-f ) 3/5 (Bond, Efstathiou & Silk 1980) Distinguish neutrinos from dark energy by time and scale dependence.
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB + P(k)
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB + Ly F + P(k)
THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Boom zoom Now: WMAP CMB + SDSS gals & Ly F: ∑ m i < 0.4 eV E.g., Hu & Tegmark, astro-ph/ , Hu, astro-ph/ , Hannestad et al, astro-ph/ Planck CMB + LSST lensing: (∑ m i ) ~ 0.04 eV Seljak et al, astro-ph/ , Goobar et al, astro-ph/ Spergel et al, astro-ph/ Seljak et al, astro-ph/ (< 0.17 eV) Future:
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Hata Neutrin os Cosmo progress so far
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Hata Neutrin os Inverted Normal Lesgourges & Pastor, astro-ph/
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Galaxy clustering progress
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 Why are LRGs so useful?
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 SDSS sphere anim
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/
LSS Our observable universe
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Quasars
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS LRG’s
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Common galaxies
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Common gals: too dense Quasars: too sparse LRG’s: just right! Why LRG’s are “Goldilocks galaxies”:
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS LRG’s Also more strongly clustered
Max Tegmark Dept. of Physics, MIT SNOW Stockholm, May 2, 2006 LSS Why LRG’s are “just right”: LRG’s have more statistical power than 2 million regular gals (Eisenstein et al 2005)