Astrophysics & Cosmology. Outline of Cosmology Section Introduction (2 pages) Overview of Probes (1 page/table) Probes (~1/2 page each) (4 pages) Complementarity.

Slides:



Advertisements
Similar presentations
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Advertisements

Observing Dark Energy SDSS, DES, WFMOS teams. Understanding Dark Energy No compelling theory, must be observational driven We can make progress on questions:
Task B: Theoretical Particle Astrophysics. History of Task B 1999: MK arrives as professor : ~$100K/year (MK summer salary plus student) :
Dark Energy BAO Intensity Mapping T. Chang, UP, J. Peterson, P. McDonald PRL 100, (March 5, 2008) UP, L. Staveley-Smith, J. Peterson, T. Chang arXiv:
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
“The Dark Side of the SDSS” Bob Nichol ICG, Portsmouth Chris Miller, David Wake, Brice Menard, Idit Zehavi, Ryan Scranton, Gordon Richards, Daniel Eisenstein,
Galaxy surveys: from controlling systematics to new physics Ofer Lahav (UCL) CLASH MACS
Particle Astrophysics at Fermilab Craig Hogan, Director, FCPA Dan Bauer, Deputy Director, FCPA Presented to the FNAL PAC November, 2009 Overview and Strategic.
Optimization of large-scale surveys to probe the DE David Parkinson University of Sussex Prospects and Principles for Probing the Problematic Propulsion.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
Answering Cosmological Questions with The Next Generation of Galaxy Surveys Will Percival (University of Portsmouth)
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
TeV Particle Astrophysics 2009 Welcome & SLAC Connections David MacFarlane Associate Laboratory Director for PPA.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
KDUST Supernova Cosmology
The SNAP Project at SLAC Phil Marshall SLAC/KIPAC Slide 1.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Luminosity & color of galaxies in clusters sarah m. hansen university of chicago with erin s. sheldon (nyu) risa h. wechsler (stanford)
Goals and methods Goals: testing Lambda CDM model and its extensions Testing inflation Methods: redshift distance relation (SN, BAO…) Linear perturbations:
1 On the road to discovery of relic gravitational waves: From cosmic microwave background radiation Wen Zhao Department of Astronomy University of Science.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Weak Gravitational Lensing by Large-Scale Structure Alexandre Refregier (Cambridge) Collaborators: Richard Ellis (Caltech) David Bacon (Cambridge) Richard.
X-ray Optical microwave Cosmology at KIPAC. The Survey 5000 square degrees (overlap with SPT and VISTA) Five-band (grizY) + VISTA (JHK) photometry to.
LSST CD-1 Review SLAC, Menlo Park, CA November 1 - 3, 2011 Analysis Overview Bhuv Jain and Jeff Newman.
Survey Science Group Workshop 박명구, 한두환 ( 경북대 )
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
WFMOS Feasibility Study Value-added Science Bob Nichol, ICG Portsmouth.
Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong (Texas Cosmology Center and Dept of. Astronomy, UT Austin) Cosmology Seminar, University.
BigBOSS science overview Uros Seljak LBNL/UC Berkeley LBNL, Nov 18, 2009.
Complementarity of weak lensing with other probes Lindsay King, Institute of Astronomy, Cambridge University UK.
Center for Cosmology and Astro-Particle Physics Great Lakes Cosmology Workshop VIII, June, 1-3, 2007 Probing Dark Energy with Cluster-Galaxy Weak Lensing.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
How Standard are Cosmological Standard Candles? Mathew Smith and Collaborators (UCT, ICG, Munich, LCOGT and SDSS-II) SKA Bursary Conference 02/12/2010.
What’s going on with Dark Energy? Bill Carithers Aspen 2008.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
Ignacy Sawicki Université de Genève Understanding Dark Energy.
A. Ealet, S. Escoffier, D. Fouchez, F. Henry-Couannier, S. Kermiche, C. Tao, A. Tilquin September 2012.
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
The Pursuit of primordial non-Gaussianity in the galaxy bispectrum and galaxy-galaxy, galaxy CMB weak lensing Donghui Jeong Texas Cosmology Center and.
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Appendix E: Intro to the Banff Feb06 Annual Meeting See the body of the text, Section 3.2, for an introduction to this introduction. The slides were taken.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
Donghui Jeong Texas Cosmology Center and Astronomy Department
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Cosmology. Where are we ? Cosmology CMB CMB P.Natoli 2009 Planck.
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
Cheng Zhao Supervisor: Charling Tao
DESpec in the landscape of large spectrographic surveys Craig Hogan University of Chicago and Fermilab.
Theoretical Perspectives on Cosmology and Cosmic Dawn Scott Dodelson: Science Futures in the 2020s.
The Dark Energy Survey Early Science results Dr A. Kathy Romer (University of Sussex) on behalf of the DES Collaboration June 3 rd 2015, Rencontres de.
Astronomy toolkits and data structures Andrew Jenkins Durham University.
PLANCK TEAM of the DISCOVERY Center. The most mysterious problems.
Testing Dark Energy and Gravity
Princeton University & APC
Cosmology from the Moon?
Cosmology With The Lyα Forest
The History of the Universe in 60 Minutes
Ben Wandelt Flatiron Institute
12/6/2018 Course Overview.
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
6-band Survey: ugrizy 320–1050 nm
Presentation transcript:

Astrophysics & Cosmology

Outline of Cosmology Section Introduction (2 pages) Overview of Probes (1 page/table) Probes (~1/2 page each) (4 pages) Complementarity (1/2 page)

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol Lensing of CMBINF/ NG of SecondariesPlanck, EBEX, ACT, SPT, Polar Bear, Quiet II CMBPol

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol Lensing of CMBINF/ NG of SecondariesPlanck, EBEX, ACT, SPT, Polar Bear, Quiet II CMBPol Galaxy Distribution0.6/0.1Nonlinearities, BiasSDSS, DES, Boss LSST, WFMOS, HETDEX

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol Lensing of CMBINF/ NG of SecondariesPlanck, EBEX, ACT, SPT, Polar Bear, Quiet II CMBPol Galaxy Distribution0.6/0.1Nonlinearities, BiasSDSS, DES, Boss LSST, WFMOS, HETDEX Galaxy Lensing0.6/0.05Baryons, NL, Photo-zCFHT-LS, DES, HyperSuprime LSST, Euclid, JDEM

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol Lensing of CMBINF/ NG of SecondariesPlanck, EBEX, ACT, SPT, Polar Bear, Quiet II CMBPol Galaxy Distribution0.6/0.1Nonlinearities, BiasSDSS, DES, Boss LSST, WFMOS, HETDEX Galaxy Lensing0.6/0.05Baryons, NL, Photo-zCFHT-LS, DES, HyperSuprime LSST, Euclid, JDEM Lyman alpha0.2-?/0.1Bias, Metals, QSO continuum SDSS, BOSS, Keck BigBOSS

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol Lensing of CMBINF/ NG of SecondariesPlanck, EBEX, ACT, SPT, Polar Bear, Quiet II CMBPol Galaxy Distribution0.6/0.1Nonlinearities, BiasSDSS, DES, Boss LSST, WFMOS, HETDEX Galaxy Lensing0.6/0.05Baryons, NL, Photo-zCFHT-LS, DES, HyperSuprime LSST, Euclid, JDEM Lyman alpha0.2-?/0.1Bias, Metals, QSO continuum SDSS, BOSS, Keck BigBOSS 21 cmINF/ ForegroundsLOFAR, MWA, Paper, GMRT SKA

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol Lensing of CMBINF/ NG of SecondariesPlanck, EBEX, ACT, SPT, Polar Bear, Quiet II CMBPol Galaxy Distribution0.6/0.1Nonlinearities, BiasSDSS, DES, Boss LSST, WFMOS, HETDEX Galaxy Lensing0.6/0.05Baryons, NL, Photo-zCFHT-LS, DES, HyperSuprime LSST, Euclid, JDEM Lyman alpha0.2-?/0.1Bias, Metals, QSO continuum SDSS, BOSS, Keck BigBOSS 21 cmINF/ ForegroundsLOFAR, MWA, Paper, GMRT SKA Galaxy Clusters0.3-?/0.1Mass Function, Mass Calibration SDSS, ChandraLSST

Probes ProbeCurrent/Reach (eV) Key systematicsCurrent Surveys Future Surveys CMB Primordial1.3/0.6NoneWMAP, PlanckCMBPol CMB Primordial + Distances 0.58/0.35Distance measuresWMAP, PlanckCMBPol Lensing of CMBINF/ NG of SecondariesPlanck, EBEX, ACT, SPT, Polar Bear, Quiet II CMBPol Galaxy Distribution0.6/0.1Nonlinearities, BiasSDSS, DES, Boss LSST, WFMOS, HETDEX Galaxy Lensing0.6/0.05Baryons, NL, Photo-zCFHT-LS, DES, HyperSuprime LSST, Euclid, JDEM Lyman alpha0.2-?/0.1Bias, Metals, QSO continuum SDSS, BOSS, Keck BigBOSS 21 cmINF/ ForegroundsLOFAR, MWA, Paper, GMRT SKA Galaxy Clusters0.3-?/0.1Mass Function, Mass Calibration SDSS, ChandraLSST SupernovaeNH (if Θ 13 >0.001) IH (any Θ 13 ) Emergent neutrino spectra SuperK, IceCUBE Nobel Liquids, Gadzooks

Complementarity Neutrino mass helps cosmologists (e.g., tighter constraints on w) Neutrino mass as measured by terrestrial experiments represents a challenge to cosmology. Six-parameter fit to a wide variety of probes will … Be one of the great successes of cosmology Require new physics (dark energy, inflation, curvature,…), the search for which will occupy future generations