Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ? .

Slides:



Advertisements
Similar presentations
Warm Up Lesson Presentation Lesson Quiz.
Advertisements

Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List the 4 theorems/postulates.
Proving Triangles Congruent Geometry D – Chapter 4.4.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
Triangle Congruence: SSS and SAS
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-3, 4-4, and 4-5 Congruent Triangles Warm Up Lesson Presentation
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
& 5.2: Proving Triangles Congruent
11. No, need  MKJ   MKL 12. Yes, by Alt Int Angles  SRT   UTR and  STR   URT; RT  RT (reflex) so ΔRST  ΔTUR by ASA 13.  A   D Given  C 
Section 7 : Triangle Congruence: CPCTC
Angle Relationships in Triangles Holt Geometry Lesson Presentation Lesson Presentation Holt McDougal Geometry.
Learning Targets I will apply the ASA Postulate, the AAS Theorem, and the HL Theorem to construct triangles and to solve problems. I will prove triangles.
1. Name the angle formed by AB and AC.
Holt Geometry 4-6 Triangle Congruence: CPCTC Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry.
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 4-6 Triangle Congruence: CPCTC 4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
CPCTC Be able to use CPCTC to find unknowns in congruent triangles! Are these triangles congruent? By which postulate/theorem? _____  _____ J L K N M.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
Warm-up Identify the postulate or theorem that proves the triangles congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
________________ is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Using Special Quadrilaterals
4-6 Triangle Congruence: CPCTC Holt Geometry.
Geometry 4-6 CPCTC. Definition  Corresponding Parts of Congruent Triangles are Congruent (CPCTC)  If two triangles are congruent, then all of their.
4-4 Using Corresponding Parts of Congruent Triangles I can determine whether corresponding parts of triangles are congruent. I can write a two column proof.
Warm Up Check homework answers with each other!. Ch : Congruence and Triangles Students will prove triangles congruent using SSS, SAS, ASA, AAS,
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Chapters 2 – 4 Proofs practice. Chapter 2 Proofs Practice Commonly used properties, definitions, and postulates  Transitive property  Substitution property.
Holt Geometry 4-3 Congruent Triangles 4-3 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
4-8 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
Objective! Use CPCTC to prove parts of triangles are congruent.
Warm Up (on the ChromeBook cart)
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective! Use CPCTC to prove parts of triangles are congruent.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
5.7 Vocabulary CPCTC CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objective Use CPCTC to prove parts of triangles are congruent.
Warm Up (on handout).
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm-Up Which congruence shortcut, if any,
CPCTC uses congruent triangles to prove corresponding parts congruent.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC 4-4
Objective We will analyze congruent triangles
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Ways to prove triangles congruent:
Congruent Triangles. Congruence Postulates.
Warm Up Find the measures of the sides of ∆ABC and classify the triangle by its sides. A(-7, 9) B(-7, -1) C(4, -1) AB = 10 BC = 11 AC = √221 The triangle.
Presentation transcript:

Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ? . 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used to prove two triangles congruent. D EF 17 Converse of Alternate Interior Angles Theorem SSS, SAS, and ASA Postulates, AAS and HL Theorems

Learning Target Use CPCTC to prove parts of triangles are congruent.

Vocabulary CPCTC – Corresponding Parts of Congruent Triangles are Congruent

CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof after you have proven two triangles congruent.

You can only use CPCTC AFTER you have proven two triangles congruent. SSS, SAS, and ASA Postulates, and AAS and HL Theorems use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent. Remember! You can only use CPCTC AFTER you have proven two triangles congruent.

Example 1: Engineering Application A and B are on the edges of a ravine. What is AB? One angle pair is congruent, because they are vertical angles. Two pairs of sides are congruent, because their lengths are equal. Therefore the two triangles are congruent by SAS Postulate. By CPCTC, the third side pair is congruent, so AB = 18 mi.

Check It Out! Example 1 A landscape architect sets up the triangles shown in the figure to find the distance JK across a pond. What is JK? One angle pair is congruent, because they are vertical angles. Two pairs of sides are congruent, because their lengths are equal. Therefore the two triangles are congruent by SAS. By CPCTC, the third side pair is congruent, so JK = 41 ft.

Example 2: Proving Corresponding Parts Congruent Given: YW bisects XZ, XY  ZY. Prove: XYW  ZYW Z

Example 2 Continued WY ZW

Statements Reasons

Given: PR bisects QPS and QRS. Check It Out! Example 2 Prove: PQ  PS Given: PR bisects QPS and QRS.

Check It Out! Example 2 Continued PR bisects QPS and QRS QRP  SRP QPR  SPR Given Def. of  bisector RP  PR Reflex. Prop. of  ∆PQR  ∆PSR PQ  PS ASA CPCTC

Statements Reasons

Then look for triangles that contain these angles. Work backward when planning a proof. To show that ED || GF, look for a pair of angles that are congruent. Then look for triangles that contain these angles. Helpful Hint

Example 3: Using CPCTC in a Proof Prove: MN || OP Given: NO || MP, N  P

Example 3 Continued Statements Reasons 1. N  P; NO || MP 1. Given 2. NOM  PMO 2. Alternate Interior Angles Theorem. 3. MO  MO 3. Reflex. Prop. of  4. ∆MNO  ∆OPM 4. AAS Theorem 5. NMO  POM 5. CPCTC 6. MN || OP 6. Conv. Of Alt. Int. s Thm.

Given: J is the midpoint of KM and NL. Check It Out! Example 3 Prove: KL || MN Given: J is the midpoint of KM and NL.

Homework: pg 270-271, #3, 4, 7-18