Carnegie Mellon 15-213/18-243: Introduction to Computer Systems Instructors: Bill Nace and Gregory Kesden (c) 1998 - 2010. All Rights Reserved. All work.

Slides:



Advertisements
Similar presentations
© Original by Donald Acton; Changes by George Tsiknis Unix I/O Related Text Sections: 2nd Ed: and st Ed: and
Advertisements

1. I/O. I/O Unix I/O RIO (robust I/O) package Metadata, sharing, and redirection Standard I/O Conclusions and examples.
Carnegie Mellon 1 System-Level I/O : Introduction to Computer Systems 14 th Lecture, Oct. 12, 2010 Instructors: Randy Bryant and Dave O’Hallaron.
System-Level I/O November 4, 2003 Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O “The.
System-Level I/O Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O.
System-Level I/O October 8, 2008 Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O class14.ppt.
System-Level I/O May 28, 2008 Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O.
System-Level I/O November 11, 2004 Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O “The.
Pointers and Memory Allocation – part 2 -L. Grewe.
System-Level I/O Nov 14, 2002 Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O class24.ppt
System-Level I/O Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O.
I/O April 16, 2002 Topics Files Unix I/O Standard I/O Reading: (Beta) or (New) Problems: 12.9 (Beta) or 12.4 (New) class24.ppt
System-Level I/O May 22, 2006 Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O.
University of Washington Memory Allocation III The Hardware/Software Interface CSE351 Winter 2013.
Recitation 11: I/O Problems Andrew Faulring Section A 18 November 2002.
Introduction to Operating Systems File I/O Most of the following slides are adapted from slides of Gregory Kesden and Markus Püschel of Carnegie Mellon.
System-level I/O Alan L. Cox Some slides adapted from CMU slides.
Input and Output Topics I/O hardware Unix file abstraction Robust I/O File sharing io.ppt CS 105 “Tour of the Black Holes of Computing”
System-Level I/O Topics Unix I/O Robust reading and writing
Carnegie Mellon 1 System-Level I/O / : Introduction to Computer Systems 15 th Lecture, Oct. 18, 2012 Instructors: Dave O’Hallaron, Greg Ganger,
1 System-Level I/O Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaron.
Week 12 - Friday.  What did we talk about last time?  Exam 2 post mortem  Low level file I/O.
Recitation 11: 11/18/02 Outline Robust I/O Chapter 11 Practice Problems Annie Luo Office Hours: Thursday 6:00 – 7:00 Wean.
UNIX Files File organization and a few primitives.
Carnegie Mellon 1 System-Level I/O / : Introduction to Computer Systems 15 th Lecture, Oct. 16, 2014 Instructors: Greg Ganger, Greg Kesden,
Carnegie Mellon 1 System-Level I/O / : Introduction to Computer Systems 15 th Lecture, June 25, 2013 Instructors: Gregory Kesden.
1 IT 252 Computer Organization and Architecture Interaction Between Systems: File Sharing R. Helps.
System-Level I/O March 25, 2004 Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O “The.
Lee CSCE 312 TAMU 1 System Level I/O Instructor: Dr. Hyunyoung Lee Based on slides provided by Randy Bryant and Dave O’Hallaron.
Input and Output Topics I/O hardware Unix file abstraction Robust I/O File sharing CS 105 “Tour of the Black Holes of Computing”
System-Level I/O.
Input and Output Topics I/O hardware Unix file abstraction Robust I/O File sharing CS 105 “Tour of the Black Holes of Computing”
Laface 2007 File system 2.1 Operating System Design Filesystem system calls buffer allocation algorithms getblk brelse bread breada bwrite iget iput bmap.
Dynamic Memory Allocation II Topics Explicit doubly-linked free lists Segregated free lists Garbage collection.
CS 105 “Tour of the Black Holes of Computing”
CSE333 SECTION 3. Important Dates Jan 27 th – Homework 1 Due Feb 6 th – Midterm.
1 System-Level I/O. 2 Outline Unix I/O Reading File Metadata Sharing Files & I/O redirection Robust I/O Standard I/O Suggested Reading –10.1~10.3, 10.5~10.7,
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition System-Level I/O : Introduction to Computer.
Files Oct. 28, 2008 Topics Mapping file offsets to disk blocks File system buffering and you The directory hierarchy lecture-18.ppt “The course.
System-Level I/O Topics Unix I/O Robust reading and writing Reading file metadata Sharing files I/O redirection Standard I/O.
Dynamic Memory Management Winter 2013 COMP 2130 Intro Computer Systems Computing Science Thompson Rivers University.
Real Numbers Device driver process within the operating system that interacts with I/O controller logical record 1 logical record 2 logical record 3.
1 Advanced Topics. 2 Outline Garbage collection Memory-related perils and pitfalls Suggested reading: 9.10, 9.11.
Carnegie Mellon 1 System-Level I/O / : Introduction to Computer Systems 15 th Lecture, June 24, 2014 Instructors: Gregory Kesden.
Error handling I/O Man pages
Memory-Related Perils and Pitfalls in C
Dynamic Memory Allocation II
Robust I/O package Chapter 11 practice problems
System-Level I/O.
Supplementary Material on Unix System Calls and Standard I/O
System-Level I/O : Introduction to Computer Systems
Introduction to Operating Systems File I/O
Files CMSC 15400: Introduction to Computer Systems Chapter 10
CS 105 “Tour of the Black Holes of Computing”
System-Level I/O Topics Unix I/O Robust reading and writing
System-Level I/O October 9, 2008
Memory Management III: Perils and pitfalls Mar 13, 2001
“The course that gives CMU its Zip!”
Memory Management III: Perils and pitfalls Mar 9, 2000
“The course that gives CMU its Zip!”
Virtual Memory CSCI 380: Operating Systems Lecture #7 -- Review and Lab Suggestions William Killian.
File I/O (1) Prof. Ikjun Yeom TA – Mugyo
Reference: Advanced Programming in the UNIX Environment, Third Edition, W. Richard Stevens and Stephen A. Rago, Addison-Wesley Professional Computing Series,
File I/O (1) Prof. Ikjun Yeom TA – Hoyoun
System-Level I/O.
System-Level I/O CSCI 380: Operating Systems
Pointer & Memory Allocation Review
CS 105 “Tour of the Black Holes of Computing”
Instructors: David Trammell
Presentation transcript:

Carnegie Mellon /18-243: Introduction to Computer Systems Instructors: Bill Nace and Gregory Kesden (c) All Rights Reserved. All work contained herein is copyrighted and used by permission of the authors. Contact for permission or for more 20 th Lecture, 1 April 2010 System I/O

Carnegie Mellon Exam 2: 6 April At your assigned lecture time Closed references, no calculators, open mind  We will provide reference material (if necessary) Covers:  Lectures  Textbook  Chapter  Chapter  Chapter  Chapter , Wilson94 reading  Labs  Tshlab  Malloclab (through checkpoint 1)

Carnegie Mellon Today Memory related bugs System level I/O  Unix I/O  Standard I/O  RIO (robust I/O) package  Conclusions and examples

Carnegie Mellon Memory-Related Perils and Pitfalls Dereferencing bad pointers Reading uninitialized memory Overwriting memory Referencing nonexistent variables Freeing blocks multiple times Referencing freed blocks Failing to free blocks

Carnegie Mellon Dereferencing Bad Pointers Problem: Attempting to use a pointer to an unallocated space in virtual memory  Attempting to use such a pointer results in protection exception The classic scanf bug In the worst case, you won’t get a protection exception! int val;... scanf(“%d”, val); int val;... scanf(“%d”, val);

Carnegie Mellon Reading Uninitialized Memory Problem: Heap memory is not initialized to zero (like.bss is) If you want zero’ed heap memory, use calloc /* return y = Ax */ int *matvec(int **A, int *x) { int *y = (int *)Malloc(N*sizeof(int)); int i, j; for (i=0; i<N; i++) for (j=0; j<N; j++) y[i] += A[i][j]*x[j]; return y; } /* return y = Ax */ int *matvec(int **A, int *x) { int *y = (int *)Malloc(N*sizeof(int)); int i, j; for (i=0; i<N; i++) for (j=0; j<N; j++) y[i] += A[i][j]*x[j]; return y; }

Carnegie Mellon Overwriting Memory Allocating the (possibly) wrong sized object Pointers and the objects they point to (int in this case) are not necessarily the same size! int **p; p = (int **)Malloc(N*sizeof(int)); for (i=0; i<N; i++) { p[i] = malloc(M*sizeof(int)); } int **p; p = (int **)Malloc(N*sizeof(int)); for (i=0; i<N; i++) { p[i] = malloc(M*sizeof(int)); }

Carnegie Mellon Overwriting Memory Off-by-one error What data is likely one word after the allocated block? When will we likely discover the problem? int **p; p = (int **)malloc(N*sizeof(int *)); for (i=0; i<=N; i++) { p[i] = malloc(M*sizeof(int)); } int **p; p = (int **)malloc(N*sizeof(int *)); for (i=0; i<=N; i++) { p[i] = malloc(M*sizeof(int)); }

Carnegie Mellon Overwriting Memory Not checking the max string size Use fgets instead Basis for classic buffer overflow attacks  1988 Internet worm  Modern attacks on Web servers  AOL/Microsoft IM war char s[8]; int i; gets(s); /* reads “ ” from stdin */ char s[8]; int i; gets(s); /* reads “ ” from stdin */

Carnegie Mellon Overwriting Memory Misunderstanding pointer arithmetic Pointer math is based on units of the pointed-to type, not 1 int *search(int *p, int val) { while (*p && *p != val) p += sizeof(int); return p; } int *search(int *p, int val) { while (*p && *p != val) p += sizeof(int); return p; }

Carnegie Mellon Overwriting Memory Referencing a pointer instead of the object it points to int *BinheapDelete(int **binheap, int *size) { int *packet; packet = binheap[0]; binheap[0] = binheap[*size - 1]; *size--; /* OOPS! Want heap size decremented */ Heapify(binheap, *size, 0); return(packet); } int *BinheapDelete(int **binheap, int *size) { int *packet; packet = binheap[0]; binheap[0] = binheap[*size - 1]; *size--; /* OOPS! Want heap size decremented */ Heapify(binheap, *size, 0); return(packet); }

Carnegie Mellon Referencing Nonexistent Variables Forgetting that local variables disappear when a function returns int *create_baffling_bug () { int val; return &val; } int *create_baffling_bug () { int val; return &val; }

Carnegie Mellon Freeing Blocks Multiple Times Nasty! x = malloc(N*sizeof(int)); free(x); y = malloc(M*sizeof(int)); free(x); x = malloc(N*sizeof(int)); free(x); y = malloc(M*sizeof(int)); free(x);

Carnegie Mellon Referencing Freed Blocks Evil! x = malloc(N*sizeof(int)); free(x);... y = malloc(M*sizeof(int)); for (i=0; i<M; i++) y[i] = x[i]++; x = malloc(N*sizeof(int)); free(x);... y = malloc(M*sizeof(int)); for (i=0; i<M; i++) y[i] = x[i]++;

Carnegie Mellon Failing to Free Blocks (Memory Leaks) Slow, long-term killer! void create_leak() { int *x = malloc(N*sizeof(int));... return; } void create_leak() { int *x = malloc(N*sizeof(int));... return; }

Carnegie Mellon Failing to Free Blocks (Memory Leaks) Freeing only part of a data structure struct list { int val; struct list *next; }; void foo() { struct list *head = malloc(sizeof(struct list)); head->val = 0; head->next = NULL;... free(head); return; } struct list { int val; struct list *next; }; void foo() { struct list *head = malloc(sizeof(struct list)); head->val = 0; head->next = NULL;... free(head); return; }

Carnegie Mellon Dealing With Memory Bugs Conventional debugger ( gdb )  Good for finding bad pointer dereferences  Hard to detect the other memory bugs Debugging malloc (UToronto CSRI malloc )  Wrapper around conventional malloc  Detects memory bugs at malloc and free boundaries  Memory overwrites that corrupt heap structures  Some instances of freeing blocks multiple times  Memory leaks  Cannot detect all memory bugs  Overwrites into the middle of allocated blocks  Freeing block twice that has been reallocated in the interim  Referencing freed blocks

Carnegie Mellon Dealing With Memory Bugs (cont.) Some malloc implementations contain checking code  Linux glibc malloc: setenv MALLOC_CHECK_ 2  FreeBSD: setenv MALLOC_OPTIONS AJR Binary translator: valgrind (Linux), Purify  Powerful debugging and analysis technique  Rewrites text section of executable object file  Can detect same errors as debugging malloc  Can also check each individual reference at runtime  Bad pointers  Overwriting  Referencing outside of allocated block Garbage collection (Boehm-Weiser Conservative GC)  Let the system free blocks instead of the programmer

Carnegie Mellon C operators OperatorsAssociativity () [] ->. left to right ! ~ * & (type) sizeof right to left * / % left to right + - left to right > left to right >= left to right == != left to right & left to right ^ left to right | left to right && left to right || left to right ?: right to left = += -= *= /= %= &= ^= != >= right to left, left to right -> has very high precedence () has very high precedence monadic * just below

Carnegie Mellon C Pointer Declarations: Test Yourself! int *p p is a pointer to int int *p[13] p is an array[13] of pointer to int int *(p[13]) p is an array[13] of pointer to int int **p p is a pointer to a pointer to an int int (*p)[13] p is a pointer to an array[13] of int int *f() f is a function returning a pointer to int int (*f)() f is a pointer to a function returning int int (*(*f())[13])() f is a function returning ptr to an array[13] of pointers to functions returning int int (*(*x[3])())[5] x is an array[3] of pointers to functions returning pointers to array[5] of ints

Carnegie Mellon Today Memory related bugs System level I/O  Unix I/O  Standard I/O  RIO (robust I/O) package  Conclusions and examples

Carnegie Mellon Unix Files A Unix file is a sequence of m bytes  B 0, B 1,...., B k,...., B m-1 All I/O devices are represented as files  /dev/sda2 ( /usr disk partition)  /dev/tty2 (terminal) Even the kernel is represented as a file  /dev/kmem (kernel memory image)  /proc (kernel data structures)

Carnegie Mellon Unix File Types Regular file  File containing user/app data (binary, text, whatever)  OS does not know anything about the format  other than “sequence of bytes”, akin to main memory Directory file  A file that contains the names and locations of other files Character special and block special files  Terminals (character special) and disks (block special) FIFO (named pipe)  A file type used for inter-process communication Socket  A file type used for network communication between processes

Carnegie Mellon Unix I/O Key Features  Elegant mapping of files to devices allows kernel to export simple interface  Important idea: All input and output is handled consistently and uniformly Basic Unix I/O operations (system calls)  Opening and closing files  open() and close()  Reading and writing a file  read() and write()  Changing the current file position (seek)  indicates next offset into file to read or write  lseek() B0B0 B1B1 B k-1 BkBk B k+1 Current file position = k

Carnegie Mellon Opening Files Opening a file informs the kernel that you are getting ready to access that file Returns a small identifying integer file descriptor  fd == -1 indicates that an error occurred Each process created by a Unix shell begins life with three open files associated with a terminal  0: standard input  1: standard output  2: standard error int fd; /* file descriptor */ if ((fd = open("/etc/hosts", O_RDONLY)) == -1) { perror("open"); exit(1); } int fd; /* file descriptor */ if ((fd = open("/etc/hosts", O_RDONLY)) == -1) { perror("open"); exit(1); }

Carnegie Mellon Closing Files Closing a file informs the kernel that you are finished accessing that file Closing an already closed file is a recipe for disaster in threaded programs (more on this later) Moral: Always check return codes, even for seemingly benign functions such as close() int fd; /* file descriptor */ int retval; /* return value */ if ((retval = close(fd)) == -1) { perror("close"); exit(1); } int fd; /* file descriptor */ int retval; /* return value */ if ((retval = close(fd)) == -1) { perror("close"); exit(1); }

Carnegie Mellon Reading Files Reading a file copies bytes from the current file position to memory, and then updates file positio Returns number of bytes read from file fd into buf  Return type ssize_t is signed integer  nbytes == -1 indicates that an error occurred  Short counts ( nbytes < sizeof(buf) ) are possible and are not errors! char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open fd and read up to 512 bytes */ if ((nbytes = read(fd, buf, sizeof(buf))) == -1) { perror("read"); exit(1); } char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open fd and read up to 512 bytes */ if ((nbytes = read(fd, buf, sizeof(buf))) == -1) { perror("read"); exit(1); }

Carnegie Mellon Writing Files Writing a file copies bytes from memory to the current file position, and then updates current file position Returns number of bytes written from buf to file fd  nbytes == -1 indicates that an error occurred  As with reads, short counts are possible and are not errors! char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open fd and write up to 512 bytes from buf */ if ((nbytes = write(fd, buf, sizeof(buf)) == -1) { perror("write"); exit(1); } char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open fd and write up to 512 bytes from buf */ if ((nbytes = write(fd, buf, sizeof(buf)) == -1) { perror("write"); exit(1); }

Carnegie Mellon Simple Unix I/O example Copying standard in to standard out, one byte at a time int main(void) { char c; while ((len = read(0 /*stdin*/, &c, 1)) == 1) { if (write(1 /*stdout*/, &c, 1) != 1) exit(20); if (len == -1) { perror (“read from stdin failed”); exit (10); } exit(0); } int main(void) { char c; while ((len = read(0 /*stdin*/, &c, 1)) == 1) { if (write(1 /*stdout*/, &c, 1) != 1) exit(20); if (len == -1) { perror (“read from stdin failed”); exit (10); } exit(0); }

Carnegie Mellon File Metadata Metadata is data about data, in this case file data Per-file metadata maintained by kernel  accessed by users with the stat and fstat functions /* Metadata returned by the stat and fstat functions */ struct stat { dev_t st_dev; /* device */ ino_t st_ino; /* inode */ mode_t st_mode; /* protection and file type */ nlink_t st_nlink; /* number of hard links */ uid_t st_uid; /* user ID of owner */ gid_t st_gid; /* group ID of owner */ dev_t st_rdev; /* device type (if inode device) */ off_t st_size; /* total size, in bytes */ unsigned long st_blksize; /* blocksize for filesystem I/O */ unsigned long st_blocks; /* number of blocks allocated */ time_t st_atime; /* time of last access */ time_t st_mtime; /* time of last modification */ time_t st_ctime; /* time of last change */ }; /* Metadata returned by the stat and fstat functions */ struct stat { dev_t st_dev; /* device */ ino_t st_ino; /* inode */ mode_t st_mode; /* protection and file type */ nlink_t st_nlink; /* number of hard links */ uid_t st_uid; /* user ID of owner */ gid_t st_gid; /* group ID of owner */ dev_t st_rdev; /* device type (if inode device) */ off_t st_size; /* total size, in bytes */ unsigned long st_blksize; /* blocksize for filesystem I/O */ unsigned long st_blocks; /* number of blocks allocated */ time_t st_atime; /* time of last access */ time_t st_mtime; /* time of last modification */ time_t st_ctime; /* time of last change */ };

Carnegie Mellon Example of Accessing File Metadata /* statcheck.c - Querying and manipulating a file’s meta data */ #include "csapp.h" int main (int argc, char **argv) { struct stat stat; char *type, *readok; Stat(argv[1], &stat); if (S_ISREG(stat.st_mode)) type = "regular"; else if (S_ISDIR(stat.st_mode)) type = "directory"; else type = "other"; if ((stat.st_mode & S_IRUSR)) /* OK to read?*/ readok = "yes"; else readok = "no"; printf("type: %s, read: %s\n", type, readok); exit(0); } /* statcheck.c - Querying and manipulating a file’s meta data */ #include "csapp.h" int main (int argc, char **argv) { struct stat stat; char *type, *readok; Stat(argv[1], &stat); if (S_ISREG(stat.st_mode)) type = "regular"; else if (S_ISDIR(stat.st_mode)) type = "directory"; else type = "other"; if ((stat.st_mode & S_IRUSR)) /* OK to read?*/ readok = "yes"; else readok = "no"; printf("type: %s, read: %s\n", type, readok); exit(0); } unix>./statcheck statcheck.c type: regular, read: yes unix> chmod 000 statcheck.c unix>./statcheck statcheck.c type: regular, read: no unix>./statcheck.. type: directory, read: yes unix>./statcheck /dev/kmem type: other, read: yes unix>./statcheck statcheck.c type: regular, read: yes unix> chmod 000 statcheck.c unix>./statcheck statcheck.c type: regular, read: no unix>./statcheck.. type: directory, read: yes unix>./statcheck /dev/kmem type: other, read: yes

Carnegie Mellon Repeated Slide: Opening Files Opening a file informs the kernel that you are getting ready to access that file Returns a small identifying integer file descriptor  fd == -1 indicates that an error occurred Each process created by a Unix shell begins life with three open files associated with a terminal  0: standard input  1: standard output  2: standard error int fd; /* file descriptor */ if ((fd = open("/etc/hosts", O_RDONLY)) == -1) { perror("open"); exit(1); } int fd; /* file descriptor */ if ((fd = open("/etc/hosts", O_RDONLY)) == -1) { perror("open"); exit(1); }

Carnegie Mellon How the Unix Kernel Represents Open Files Two descriptors referencing two distinct open disk files. Descriptor 1 (stdout) points to terminal, and descriptor 4 points to open disk file fd 0 fd 1 fd 2 fd 3 fd 4 Descriptor table [one table per process] Open file table [shared by all processes] v-node table [shared by all processes] File pos refcnt=1 File pos refcnt=1 stderr stdout stdin File access File size File type File access File size File type File A (terminal) File B (disk) Info in stat struct

Carnegie Mellon File Sharing Two distinct descriptors sharing the same disk file through two distinct open file table entries  E.g., Calling open twice with the same filename argument fd 0 fd 1 fd 2 fd 3 fd 4 Descriptor table [one table per process] Open file table [shared by all processes] v-node table [shared by all processes] File pos refcnt=1 File pos refcnt=1 stderr stdout stdin File access File size File type File A File B

Carnegie Mellon How Processes Share Files: Fork() A child process inherits its parent’s open files  Note: situation unchanged by exec() functions Before fork() call fd 0 fd 1 fd 2 fd 3 fd 4 Descriptor table [one table per process] Open file table [shared by all processes] v-node table [shared by all processes] File pos refcnt=1 File pos refcnt=1 stderr stdout stdin File access File size File type File access File size File type File A (terminal) File B (disk)

Carnegie Mellon How Processes Share Files: Fork() A child process inherits its parent’s open files After fork():  Child’s table same as parents, and +1 to each refcnt fd 0 fd 1 fd 2 fd 3 fd 4 Descriptor table [one table per process] Open file table [shared by all processes] v-node table [shared by all processes] File pos refcnt=2 File pos refcnt=2 stderr stdout stdin File access File size File type File access File size File type File A (terminal) File B (disk) fd 0 fd 1 fd 2 fd 3 fd 4 stderr stdout stdin

Carnegie Mellon I/O Redirection Question: How does a shell implement I/O redirection?  unix> ls > foo.txt Answer: By calling the dup2(oldfd, newfd) function  Copies (per-process) descriptor table entry oldfd to entry newfd Descriptor table before dup2(4,1) Descriptor table after dup2(4,1) fd 0 fd 1 a fd 2 fd 3 fd 4 b fd 0 fd 1 b fd 2 fd 3 fd 4 b

Carnegie Mellon I/O Redirection Example Step #1: open file to which stdout should be redirected  Happens in child executing shell code, before exec() fd 0 fd 1 fd 2 fd 3 fd 4 Descriptor table [one table per process] Open file table [shared by all processes] v-node table [shared by all processes] File pos refcnt=1 File pos refcnt=1 stderr stdout stdin File access File size File type File access File size File type File A (terminal) File (foo.txt)

Carnegie Mellon I/O Redirection Example (continued) Step #2: call dup2(4,1)  cause fd=1 (stdout) to refer to disk file pointed at by fd=4 fd 0 fd 1 fd 2 fd 3 fd 4 Descriptor table [one table per process] Open file table [shared by all processes] v-node table [shared by all processes] File pos refcnt=1 File pos refcnt=1 stderr stdout stdin File access File size File type File access File size File type File A (terminal) File B (disk)

Carnegie Mellon Today Memory related bugs System level I/O  Unix I/O  Standard I/O  RIO (robust I/O) package  Conclusions and examples

Carnegie Mellon Standard I/O Functions The C standard library ( libc.a ) contains a collection of higher- level standard I/O functions  Documented in Appendix B of K&R Examples of standard I/O functions:  Opening and closing files ( fopen and fclose )  Reading and writing bytes ( fread and fwrite )  Reading and writing text lines ( fgets and fputs )  Formatted reading and writing ( fscanf and fprintf )

Carnegie Mellon Standard I/O Streams Standard I/O models open files as streams  Abstraction for a file descriptor and a buffer in memory  Similar to buffered RIO (later) C programs begin life with three open streams (defined in stdio.h )  stdin (standard input)  stdout (standard output)  stderr (standard error) #include extern FILE *stdin; /* standard input (descriptor 0) */ extern FILE *stdout; /* standard output (descriptor 1) */ extern FILE *stderr; /* standard error (descriptor 2) */ int main() { fprintf(stdout, "Hello, world\n"); } #include extern FILE *stdin; /* standard input (descriptor 0) */ extern FILE *stdout; /* standard output (descriptor 1) */ extern FILE *stderr; /* standard error (descriptor 2) */ int main() { fprintf(stdout, "Hello, world\n"); }

Carnegie Mellon Buffering in Standard I/O Standard I/O functions use buffered I/O Buffer flushed to output fd on “\n” or fflush() call printf("h"); printf("e"); printf("l"); printf("o"); printf("\n"); fflush(stdout); buf write(1, buf, 6); hello\n

Carnegie Mellon Standard I/O Buffering in Action You can see this buffering in action for yourself, using the always fascinating Unix strace program: linux> strace./hello execve("./hello", ["hello"], [/*... */]).... write(1, "hello\n", 6...) = 6... _exit(0) = ? linux> strace./hello execve("./hello", ["hello"], [/*... */]).... write(1, "hello\n", 6...) = 6... _exit(0) = ? #include int main() { printf("h"); printf("e"); printf("l"); printf("o"); printf("\n"); fflush(stdout); exit(0); } #include int main() { printf("h"); printf("e"); printf("l"); printf("o"); printf("\n"); fflush(stdout); exit(0); }

Carnegie Mellon Fork Example #2 (Earlier Lecture) void fork2() { printf("L0\n"); fork(); printf("L1\n"); fork(); printf("Bye\n"); } void fork2() { printf("L0\n"); fork(); printf("L1\n"); fork(); printf("Bye\n"); } L0 L1 Bye

Carnegie Mellon Fork Example #2 (Modified) void fork2_mod() { printf("L0"); fork(); printf("L1\n"); fork(); printf("Bye\n"); } void fork2_mod() { printf("L0"); fork(); printf("L1\n"); fork(); printf("Bye\n"); } L0L1 Bye

Carnegie Mellon Repeated Slide: Reading Files Reading a file copies bytes from the current file position to memory, and then updates file position Returns number of bytes read from file fd into buf  Return type ssize_t is signed integer  nbytes < 0 indicates that an error occurred  short counts ( nbytes < sizeof(buf) ) are possible and are not errors! char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open file fd... */ /* Then read up to 512 bytes from file fd */ if ((nbytes = read(fd, buf, sizeof(buf))) < 0) { perror("read"); exit(1); }

Carnegie Mellon Dealing with Short Counts Short counts can occur in these situations:  Encountering (end-of-file) EOF on reads  Reading text lines from a terminal  Reading and writing network sockets or Unix pipes Short counts never occur in these situations:  Reading from disk files (except for EOF)  Writing to disk files One way to deal with short counts in your code:  Use the RIO (Robust I/O) package from your textbook’s csapp.c file (Appendix B)

Carnegie Mellon Today Memory related bugs System level I/O  Unix I/O  Standard I/O  RIO (robust I/O) package  Conclusions and examples

Carnegie Mellon The RIO Package RIO is a set of wrappers that provide efficient and robust I/O in apps, such as network programs that are subject to short counts RIO provides two different kinds of functions  Unbuffered input and output of binary data  rio_readn and rio_writen  Buffered input of binary data and text lines  rio_readlineb and rio_readnb  Buffered RIO routines are thread-safe and can be interleaved arbitrarily on the same descriptor Download from  csapp.cs.cmu.edu/public/ics/code/src/csapp.c  csapp.cs.cmu.edu/public/ics/code/include/csapp.h

Carnegie Mellon Unbuffered RIO Input and Output Same interface as Unix read and write Especially useful for transferring data on network sockets  rio_readn returns short count only if it encounters EOF  Only use it when you know how many bytes to read  rio_writen never returns a short count  Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same descriptor #include "csapp.h" ssize_t rio_readn(int fd, void *usrbuf, size_t n); ssize_t rio_writen(int fd, void *usrbuf, size_t n); Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error #include "csapp.h" ssize_t rio_readn(int fd, void *usrbuf, size_t n); ssize_t rio_writen(int fd, void *usrbuf, size_t n); Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon Implementation of rio_readn /* * rio_readn - robustly read n bytes (unbuffered) */ ssize_t rio_readn(int fd, void *usrbuf, size_t n) { size_t nleft = n; ssize_t nread; char *bufp = usrbuf; while (nleft > 0) { if ((nread = read(fd, bufp, nleft)) < 0) { if (errno == EINTR) /* interrupted by sig handler return */ nread = 0; /* and call read() again */ else return -1; /* errno set by read() */ } else if (nread == 0) break; /* EOF */ nleft -= nread; bufp += nread; } return (n - nleft); /* return >= 0 */ } /* * rio_readn - robustly read n bytes (unbuffered) */ ssize_t rio_readn(int fd, void *usrbuf, size_t n) { size_t nleft = n; ssize_t nread; char *bufp = usrbuf; while (nleft > 0) { if ((nread = read(fd, bufp, nleft)) < 0) { if (errno == EINTR) /* interrupted by sig handler return */ nread = 0; /* and call read() again */ else return -1; /* errno set by read() */ } else if (nread == 0) break; /* EOF */ nleft -= nread; bufp += nread; } return (n - nleft); /* return >= 0 */ }

Carnegie Mellon Buffered I/O: Motivation I/O Applications Read/Write One Character at a Time  getc, putc, ungetc  gets  Read line of text, stopping at newline Implementing as Calls to Unix I/O Expensive  Read & Write involve require Unix kernel calls  > 10,000 clock cycles Buffered Read  Use Unix read() to grab block of bytes  User input functions take one byte at a time from buffer  Refill buffer when empty unreadalready read Buffer

Carnegie Mellon Buffered I/O: Implementation rio_buf rio_bufptr rio_cnt Current File Position Buffered Portion Bufferalready readunread not in bufferalready readunreadunseen

Carnegie Mellon Buffered I/O: Declaration All information contained in struct typedef struct { int rio_fd; /* descriptor for this internal buf */ int rio_cnt; /* unread bytes in internal buf */ char *rio_bufptr; /* next unread byte in internal buf */ char rio_buf[RIO_BUFSIZE]; /* internal buffer */ } rio_t; typedef struct { int rio_fd; /* descriptor for this internal buf */ int rio_cnt; /* unread bytes in internal buf */ char *rio_bufptr; /* next unread byte in internal buf */ char rio_buf[RIO_BUFSIZE]; /* internal buffer */ } rio_t; rio_buf rio_bufptr rio_cnt Bufferalready readunread

Carnegie Mellon Buffered RIO Input Functions Efficiently read text lines and binary data from a file partially cached in an internal memory buffer rio_readlineb reads a text line of up to maxlen bytes from file fd and stores the line in usrbuf  Especially useful for reading text lines from network sockets Stopping conditions  maxlen bytes read  EOF encountered  Newline (‘ \n ’) encountered #include "csapp.h" void rio_readinitb(rio_t *rp, int fd); ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen); Return: number of bytes read if OK, 0 on EOF, -1 on error #include "csapp.h" void rio_readinitb(rio_t *rp, int fd); ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen); Return: number of bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon Buffered RIO Input Functions (cont) rio_readnb reads up to n bytes from file fd Stopping conditions  maxlen bytes read  EOF encountered Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily on the same descriptor  Warning: Don’t interleave with calls to rio_readn #include "csapp.h" void rio_readinitb(rio_t *rp, int fd); ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen); ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n); Return: number of bytes read if OK, 0 on EOF, -1 on error #include "csapp.h" void rio_readinitb(rio_t *rp, int fd); ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen); ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n); Return: number of bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon RIO Example Copying the lines of a text file from standard input to standard output #include "csapp.h" int main(int argc, char **argv) { int n; rio_t rio; char buf[MAXLINE]; Rio_readinitb(&rio, STDIN_FILENO); while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) Rio_writen(STDOUT_FILENO, buf, n); exit(0); } #include "csapp.h" int main(int argc, char **argv) { int n; rio_t rio; char buf[MAXLINE]; Rio_readinitb(&rio, STDIN_FILENO); while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) Rio_writen(STDOUT_FILENO, buf, n); exit(0); }

Carnegie Mellon Today Memory related bugs System level I/O  Unix I/O  Standard I/O  RIO (robust I/O) package  Conclusions and examples

Carnegie Mellon Choosing I/O Functions General rule: use the highest-level I/O functions you can  Many C programmers do all of their work using standard I/O functions When to use standard I/O  When working with disk or terminal files When to use raw Unix I/O  When you need to fetch file metadata  In rare cases when you need absolute highest performance When to use RIO  When you are reading and writing network sockets or pipes  Never use standard I/O or raw Unix I/O on sockets or pipes

Carnegie Mellon For Further Information The Unix bible:  W. Richard Stevens & Stephen A. Rago, Advanced Programming in the Unix Environment, 2nd Edition, Addison Wesley, 2005  Updated from Stevens’ 1993 book Stevens is arguably the best technical writer ever  Produced authoritative works in:  Unix programming  TCP/IP (the protocol that makes the Internet work)  Unix network programming  Unix IPC programming Tragically, Stevens died Sept. 1, 1999

Carnegie Mellon Fun with File Descriptors (1) What would this program print for file containing “abcde”? #include "csapp.h" int main(int argc, char *argv[]) { int fd1, fd2, fd3; char c1, c2, c3; char *fname = argv[1]; fd1 = Open(fname, O_RDONLY, 0); fd2 = Open(fname, O_RDONLY, 0); fd3 = Open(fname, O_RDONLY, 0); Dup2(fd2, fd3); Read(fd1, &c1, 1); Read(fd2, &c2, 1); Read(fd3, &c3, 1); printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3); return 0; } #include "csapp.h" int main(int argc, char *argv[]) { int fd1, fd2, fd3; char c1, c2, c3; char *fname = argv[1]; fd1 = Open(fname, O_RDONLY, 0); fd2 = Open(fname, O_RDONLY, 0); fd3 = Open(fname, O_RDONLY, 0); Dup2(fd2, fd3); Read(fd1, &c1, 1); Read(fd2, &c2, 1); Read(fd3, &c3, 1); printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3); return 0; }

Carnegie Mellon Fun with File Descriptors (2) What would this program print for file containing “abcde”? #include "csapp.h" int main(int argc, char *argv[]) { int fd1; int s = getpid() & 0x1; char c1, c2; char *fname = argv[1]; fd1 = Open(fname, O_RDONLY, 0); Read(fd1, &c1, 1); if (fork()) { /* Parent */ sleep(s); Read(fd1, &c2, 1); printf("Parent: c1 = %c, c2 = %c\n", c1, c2); } else { /* Child */ sleep(1-s); Read(fd1, &c2, 1); printf("Child: c1 = %c, c2 = %c\n", c1, c2); } return 0; } #include "csapp.h" int main(int argc, char *argv[]) { int fd1; int s = getpid() & 0x1; char c1, c2; char *fname = argv[1]; fd1 = Open(fname, O_RDONLY, 0); Read(fd1, &c1, 1); if (fork()) { /* Parent */ sleep(s); Read(fd1, &c2, 1); printf("Parent: c1 = %c, c2 = %c\n", c1, c2); } else { /* Child */ sleep(1-s); Read(fd1, &c2, 1); printf("Child: c1 = %c, c2 = %c\n", c1, c2); } return 0; }

Carnegie Mellon Fun with File Descriptors (3) What would be the contents of the resulting file? #include "csapp.h" int main(int argc, char *argv[]) { int fd1, fd2, fd3; char *fname = argv[1]; fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR); Write(fd1, "pqrs", 4); fd3 = Open(fname, O_APPEND|O_WRONLY, 0); Write(fd3, "jklmn", 5); fd2 = dup(fd1); /* Allocates descriptor */ Write(fd2, "wxyz", 4); Write(fd3, "ef", 2); return 0; } #include "csapp.h" int main(int argc, char *argv[]) { int fd1, fd2, fd3; char *fname = argv[1]; fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR); Write(fd1, "pqrs", 4); fd3 = Open(fname, O_APPEND|O_WRONLY, 0); Write(fd3, "jklmn", 5); fd2 = dup(fd1); /* Allocates descriptor */ Write(fd2, "wxyz", 4); Write(fd3, "ef", 2); return 0; }

Carnegie Mellon Accessing Directories Only recommended operation on a directory: read its entries  dirent structure contains information about a directory entry  DIR structure contains information about directory while stepping through its entries #include { DIR *directory; struct dirent *de;... if (!(directory = opendir(dir_name))) error("Failed to open directory");... while (0 != (de = readdir(directory))) { printf("Found file: %s\n", de->d_name); }... closedir(directory); } #include { DIR *directory; struct dirent *de;... if (!(directory = opendir(dir_name))) error("Failed to open directory");... while (0 != (de = readdir(directory))) { printf("Found file: %s\n", de->d_name); }... closedir(directory); }

Carnegie Mellon Unix I/O Key Characteristics Classic Unix/Linux I/O I/O operates on linear streams of bytes  Can reposition insertion point and extend file at end I/O tends to be synchronous  Read or write operation block until data has been transferred Fine grained I/O  One key-stroke at a time  Each I/O event is handled by the kernel and an appropriate process Mainframe I/O I/O operates on structured records  Functions to locate, insert, remove, update records I/O tends to be asynchronous  Overlap I/O and computation within a process Coarse grained I/O  Process writes “channel programs” to be executed by the I/O hardware  Many I/O operations are performed autonomously with one interrupt at completion

Carnegie Mellon Unix I/O vs. Standard I/O vs. RIO Standard I/O and RIO are implemented using low-level Unix I/O Which ones should you use in your programs? Unix I/O functions (accessed via system calls) Standard I/O functions C application program fopen fdopen fread fwrite fscanf fprintf sscanf sprintf fgets fputs fflush fseek fclose open read write lseek stat close rio_readn rio_writen rio_readinitb rio_readlineb rio_readnb RIO functions

Carnegie Mellon Pros and Cons of Unix I/O Pros  Unix I/O is the most general and lowest overhead form of I/O  All other I/O packages are implemented using Unix I/O functions  Unix I/O provides functions for accessing file metadata Cons  Dealing with short counts is tricky and error prone  Efficient reading of text lines requires some form of buffering, also tricky and error prone  Both of these issues are addressed by the standard I/O and RIO packages

Carnegie Mellon Pros and Cons of Standard I/O Pros:  Buffering increases efficiency by decreasing the number of read and write system calls  Short counts are handled automatically Cons:  Provides no function for accessing file metadata  Standard I/O is not appropriate for input and output on network sockets  There are poorly documented restrictions on streams that interact badly with restrictions on sockets

Carnegie Mellon Working with Binary Files Binary File Examples  Object code  Images (JPEG, GIF)  Arbitrary byte values Functions you shouldn’t use  Line-oriented I/O  fgets, scanf, printf, rio_readlineb  Interprets byte value 0x0A (‘ \n ’) as special  Use rio_readn or rio_readnb instead  String functions  strlen, strcpy  Interprets byte value 0x00 as special

Carnegie Mellon Java I/O Standard Java Streams are Unbuffered  Every read/write call invokes OS  Preferable to “wrap” stream with buffered stream Java Distinguishes Characters from Bytes  Characters: Various encodings to allow more than ASCII characters  Bytes: Always 8 bits. Used for binary data BufferedReader in = new BufferedReader(new FileReader("char-in.txt")); BufferedWriter out = new BufferedWriter(new FileWriter("char-out.txt")); BufferedInputStream in = new BufferedInputStream(new FileInputStream("binary-in.txt")); BufferedOutputStream out = new BufferedOutputStream(new FileOutputStream("binary-out.txt"));

Carnegie Mellon Summary Memory Related Bugs System level I/O Next Time: Exam2