1/30Peter FierlingerStanford, 18.10.05 Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.

Slides:



Advertisements
Similar presentations
Solid Oxygen based Ultra-Cold Neutron Source
Advertisements

TRIUMF UCN workshop, 2007 Solid state physics experiments with UCN E. Korobkina.
The PSI UCN source Status summer/autumn 2007: 1) Introduction 2) Source principle 3) R & D experiments UCN storage, losses and depolarization UCN production.
Andreas Knecht1ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 A Gravitational Spectrometer for Ultracold Neutrons Andreas Knecht Paul Scherrer Institut.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
Hadron physics with GeV photons at SPring-8/LEPS II
Neutron detectors and spectrometers 1) Complicated reactions → strong dependency of efficiency on energy 2) Small efficiency → necessity of large volumes.
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Measures in the distant past precision measurements: what do they provide? precision experiments part of large facilities precision experiments with neutrons.
Hartmut Abele Knoxville, 8 June 2006 Neutron Decay Correlation Experiments.
Neutron interaction with matter 1) Introduction 2) Elastic scattering of neutrons 3) Inelastic scattering of neutrons 4) Neutron capture 5) Other nuclear.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
UCN (Ultracold Neutrons) Jeff Martin Outline What is a UCN? Interactions of UCN How to make UCN Fun things to do with UCN.
Basic Measurements: What do we want to measure? Prof. Robin D. Erbacher University of California, Davis References: R. Fernow, Introduction to Experimental.
Lepton Moments 2014 Craigville 07/22/2014 P. Schmidt-Wellenburg PSI Searching for the electric dipole moment of the neutron.
Study of the Time-Reversal Violation with neutrons
1 Neutron Electric Dipole Moment Experiment Jen-Chieh Peng International Workshop on “High Energy Physics in the LHC Era” Valparaiso, Chile, December 11-15,
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
Lecture 27 Overview Final: May 8, SEC hours (4-7 PM), 6 problems
The Neutron Beta-Decay Exploring the properties of fundamental interactions Hartmut Abele Bar Harbor A,B,C,D,…  The Neutron Alphabet.
UCN optics, polarization foils and spinflipper for the munich nEDM approach Thorsten Lauer.
Electric Dipole Moment of Neutron and Neutrinos
W. Udo Schröder, 2007 Semi-Classical Reaction Theory 1.
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
1/30Peter Fierlinger FERMILAB Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Nucleon: T = ½, m t =  ½. For a nucleus, by extension: m t = ½ (Z - N). If neutrons and protons are really “identical” as far as the strong interaction.
Deuteron Polarimeter for Electric Dipole Moment Search Ed Stephenson Indiana University Cyclotron Facility DIPOLES: μ·B + ־ reverse time + ־ d·Ed·E commonplace.
Ultracold neutrons and neutron decay Oliver Zimmer ILL Grenoble / TU München 19th Int. IUPAP Conf. On Few-Body Problems in Physics Bonn, 14 July 2008.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Russian Research Center” Kurchatov Institute” Theoretical Modeling of Track Formation in Materials under Heavy Ion Irradiation Alexander Ryazanov “Basic.
Separate production cell. Geometry and dimensions If the filling time is much shorter then the accumulation time then maximum of UCN density in the measurement.
Precision measurement of the neutron β-asymmetry A with spin-polarized ultracold neutrons B.W. Filippone, K.P. Hickerson, T.M. Ito, J. Liu, J.W. Martin,
UCN magnetic storage and neutron lifetime V.F.Ezhov Petersburg Nuclear Physics Institute, Gatchina, Russia. (ITEP )
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
The aSPECT collaboration: Institut für Physik, Universität Mainz, Germany: F. Ayala Guardia, M. Borg, F. Glück, W. Heil, G. Konrad, N. Luquero Llopis,
Experimental Studies of Spatial Distributions of Neutrons Produced by Set-ups with Thick Lead Target Irradiated by Relativistic Protons Vladimír Wagner.
June 2010 The search for permanent electric dipole moments Klaus Kirch ETH Zürich & PSI Villigen CP violation and electric dipole.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
J. Kohlbrecher, Polarized Solid Targets, Honnef 2003 Dynamics Of Nuclear Spin Polarization J. Kohlbrecher Paul Scherrer Institute CH-5232 Villigen Switzerland.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Particle Physics with Slow Neutrons ILNGS Summer Institute, September 2005Torsten Soldner Particle Physics with Slow Neutrons I: Neutrons in the Standard.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
Contents Introduction (motivation of precise measurements of neutron lifetime, history of experimental accuracy improvement). a. Result of neutron lifetime.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Journée de la division Champs et.
Moving the NPDGamma Experiment to the SNS FnPB Christopher Crawford University of Kentucky overview of NPDGamma transition to the SNS expected.
Ultracold neutrons from He-II for a neutron lifetime experiment Oliver Zimmer Institut Laue Langevin Grenoble PSI2013, Villigen, 12 September 2013.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Measurement of parity-violating asymmetries in the reactions of light nuclei with polarized neutrons ( 6.
N νeνeνeνe p+p+ e-e- The Proton Spectrum in Neutron Beta Decay: Latest Results with the a SPECT Spectrometer The a SPECT collaboration Universität MainzF.
UCN transport and NN experiments
Latest results from the superfluid-helium UCN source SUN2 at ILL
Precision experiments
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
A new simultaneous spin analyser (USSA) for the PSI nEDM experiment
Neutron detectors for the NMX instrument
R. Young, M. Makela, G. Muhrer, C. Morris, A. Saunders
Big Gravitational Trap for neutron lifetime measurements
Outside the nucleus, the beta decay {image} will not occur because the neutron and electron have more total mass than the proton. This process can occur.
Weak Interactions in the Nucleus II
Polarized Internal Gas Target in a Strong Toroidal Magnetic Field
Presentation transcript:

1/30Peter FierlingerStanford, Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger

2/30Peter FierlingerStanford, W E p-Accelerator Synchrotron SLS neutron source SINQ Paul Scherrer Institut, Switzerland

3/30Peter FierlingerStanford, Contents Ultra-cold neutrons (UCN) Motivation: Electric dipole moment of the neutron (nEDM) Life time of the free neutron The new UCN source at the PSI accelerator UCN related R&D: DLC DLC test ILL

4/30Peter FierlingerStanford, E 50 nm - Gravity ~ 100 neV / m - Magnetic field ~ 60 neV / T - Strong interaction: „Fermi potential“ Ultra-cold neutrons UCN can be stored in traps for ~ 1000 s V┴V┴

5/30Peter FierlingerStanford, spin 1/2 nEDM Magnetic moment µ AXIAL VECTOR Electric dipole moment d POLAR VECTOR T transformation P transformation Purcell and Ramsey, PR78(1950)807, Lee and Yang, Landau A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP Predicted: d ~ e. cm (MSSM) d < e. cm (SM) Experimental Limit: ILL-Sussex-RAL (1999): ( -1.0 ± 3.6 ) · e·cm STATISTICAL LIMIT

6/30Peter FierlingerStanford,  n & CKM matrix PERKEO II without PERKEO II Universality: (885.7±1 s) STATISTICAL LIMIT

7/30Peter FierlingerStanford, Pulsed operation: 8 sec on 800 sec off nEDM Cockroft-Walton: 800keV, 40mA Injector II: 72MeV, 2mA Ring cyclotron: 600MeV, 2mA, PSI UCN Source

8/30Peter FierlingerStanford, Spallation target Shutter n-Guide Cold sD 2 moderator UCN storage volume, 2m 3 UCN tank system (~6m high) D 2 O moderator Coated walls To experiments p beam 4000 UCN/cm3

9/30Peter FierlingerStanford, Storage materials low loss probability per wall collision µ long storage time µ(E) ~  high Fermi potential more UCN low spin flip probability per wall collision  polarized UCN (e.g. in nEDM) E Intensity typical UCN spectrum

10/30Peter FierlingerStanford, Storage materials Al Pb Ni C Diamond BeO Be 300 K Be 70 K 58 Ni 65 Cu CuFe DLC

11/30Peter FierlingerStanford, Diamond-like Carbon „sp 2 “ „sp 3 “ DENSITY 1...igniting Laser with beam guides 2...cathode cylinder 3...anode 4...filtering electrode 5...plasma beam 6...opening to the coating chamber

12/30Peter FierlingerStanford, Reflectometry φφ v┴v┴ Detector V ┴ ~ < 7 m/s ~ UCN Other methods used: XPS, NEXAFS, Raman, LaWAVE

13/30Peter FierlingerStanford, Adiabatic condition Gravity: 1 m = 100 neV Magnetic field: 60 neV/T DLC test experiment No mechanical slits Depolarization probability  Loss probability µ measured simultaneously: Most common storage material: Beryllium μ(E, ,T) ~ (at 70 K) β ~ μ, β of DLC = ? Monte Carlo program (E) Experimental setup Samples Method I: µ(T,E) and  (T,E) Method II:  (T,E)

14/30Peter FierlingerStanford, Monte Carlo program Geant4 : CERN particle tracking simulation toolkit Fermi potential, wall reflections Wall losses & spin flips Absorption, scattering Gravity & magnetic fields (space-, time-dependent) Spin tracking Adapted for UCN:

15/30Peter FierlingerStanford, Setup: n+ 3 He  t+p+780keV

16/30Peter FierlingerStanford, Substrates: Al tubes Quartz tubes Al foils PET foils Coatings: DLC, laser arc, Dresden DLC, PLD, VT Be, sputtered, PNPI & TUM Film thickness > 100 nm ( ~ 10 x penetration depth) Samples 70 mm

17/30Peter FierlingerStanford, Method I Detector count rate: B Sample Magnet UCN from ILL-turbine Detector B % time [s]

18/30Peter FierlingerStanford, Method I: cleaning 100 Lost neutrons magnet spin- flipped B field 90% 100 % time (s) Magnetic field 60 Losses from the storage volume Simulated ! wall loss decay top 100 Lost neutrons Fall through magnet spin- flipped B field 90% 100 % Storagetime (s) Magnetic field 60 Losses from the storage volume Simulated ! simulated measured Count rate

19/30Peter FierlingerStanford, Method I: storage Potential energy Wall collisions (E) 1 / (s.cm_height) [neV ]

20/30Peter FierlingerStanford, Method I: spectrum 120 s storage 320 s storage simulated measured Typical # of UCN stored ~ 600

21/30Peter FierlingerStanford, Method I: analysis Detector count rate log % % 0 Magnetic field  up to 450 s

22/30Peter FierlingerStanford, Method I: loss probability  tot * Measurement: with Compare to simulation )E()E( 11 nst    

23/30Peter FierlingerStanford, Method I: results Wall loss coefficient  [1 / wall collision] x DLC is a good choice

24/30Peter FierlingerStanford, Method I: analysis log Detector count rate 100 % % 0 Magnetic field

25/30Peter FierlingerStanford, Method I: depolarization ~ 1 in 200 s: Poisson Statistics

26/30Peter FierlingerStanford, Method II Detector Count rate: time [s] Sample Magnet % 0 B UCN Detector

27/30Peter FierlingerStanford, Method II: analysis 1 / (s.cm_height) Wall collision distribution par Accumulating neutrons ProductionLoss Energy [neV] Height [mm]

28/30Peter FierlingerStanford, Method I & II: results Spin flip probability  [1 / wall collision] …Method I …Method II

29/30Peter FierlingerStanford, Interpretation So-called „anomalous losses“:  (0 K) ~ theor. but: ~ exp. Hydrogen:  =  C +  H N H ~ 0.3 N C Explains also spin flips

30/30Peter FierlingerStanford, Conclusions - Monte Carlo package for UCN included in GEANT4 - Loss and depolarization measured simultaneously for the first time - Hydrogen is a good candidate for the explanation of the losses - DLC is top candidate for the UCN source at PSI

31/30Peter FierlingerStanford, BACKUP

32/30Peter FierlingerStanford, DLC Deposition on large foils Fraunhofer Institut Dresden, Coating facility in Dortmund

33/30Peter FierlingerStanford, Vacuum Arc Deposition 1...igniting Laser with beam guides 2...cathode cylinder 3...anode 4...filtering electrode 5...plasma beam 6...opening to the coating chamber

34/30Peter FierlingerStanford, Motivation: nEDM ILL-Sussex-RAL (1999): ( -1.0 ± 3.6 ) · e·cm Theoretical predictions: SUSY : e·cm Imagine the neutron were the size of the Earth...  x  1  m

35/30Peter FierlingerStanford, nEDM measurement B0B0 B0B0 B0B0 B1B1 B0B0 B1B1 Free Precession  /2 Pulse Polarized UCN in a trap  /2 Pulse 100 s + + ±E±E

36/30Peter FierlingerStanford, UCN Transmission EDM-UCN beam at ILL: TOF Foil coated with -Be (black) -DLC (red) UCN Chopper Sample Detector 2 m

37/30Peter FierlingerStanford, UCN Physics in Geant4 Fermi potential, wall reflections Wall losses & spin-flips Absorption, scattering gravitational & magnetic fields (space-, time-dependent) Numerical solution of the Bloch equation L/L/ from NIM A 457 (2001), components of P after  /2 flip at |B| = 1g

38/30Peter FierlingerStanford, Filling Simulated spectrum shift (1 spin component) Energy [neV] Rel. Intensity

39/30Peter FierlingerStanford, RK4

40/30Peter FierlingerStanford, Low field transitions B0B0 B earth

41/30Peter FierlingerStanford, Spin tracking Coupled equations : „Bloch“-equation Treated classically

42/30Peter FierlingerStanford, Penetration depth …. „Penetration depth“ Energy inside the barrier

43/30Peter FierlingerStanford, The Magnet

44/30Peter FierlingerStanford, Neutron life time CKM (quark mixing) matrix is unitary: V ud (neutr)= ± PDG 2004 V ud (nucl)= ± Coupling for Leptons = Coupling for Quarks (885.7±1 s) PDG 2004 STATISTICAL LIMIT

45/30Peter FierlingerStanford, Maxwell spectrum v v UCN < 7m/s v th ~ 2 km/s v c ~ 1 km/s

46/30Peter FierlingerStanford, He

47/30Peter FierlingerStanford, Maxwell Distribution Neutron density between v and v+dv at thermal equilibrium (average velocity)

48/30Peter FierlingerStanford, A oder und B A mit den elektronen B mit neutrino

49/30Peter FierlingerStanford, The spectrometer P ERKEO II (Heidelberg – ILL) [J. Reich, H. Abele, D. Dubbers et al., NIMA 440 (2000) 535] // [H. Abele, S. Baeßler. D. Dubbers et al., to appear in PRL]: [H. Abele, S. Baeßler, D. Dubbers et al., PLB 407 (1997) 212]:

50/30Peter FierlingerStanford, Maxwell Distribution Neutron density between v and v+dv at thermal equilibrium (average velocity)

51/30Peter FierlingerStanford,  - decay Correlation coefficients: A – parity violation, coupling constant ratio  G A /G V D – time-reversal violation R – parity and time-reversal violation

52/30Peter FierlingerStanford, Superallowed β-decays Ft = ft(1 + δ R )(1 – δ C ) = K/[2G V 2 (1 + Δ R )] Universality: G V = G μ cosθ = G μ V ud V ud 2 = K/[2G μ 2 (1 + Δ R ) Ft] V ud =  (10) (unitarity value: ~0.9756) Courtesy H.K. Walter New measurements?

53/30Peter FierlingerStanford, Differential decay probability: p e-e- Angular correlations:

54/30Peter FierlingerStanford, UCN turbine Maxwellian distribution 2000 UCN/cm 3 extracted UCN 40 UCN/cm 3 1~10 UCN/cm 3 at experiment

55/30Peter FierlingerStanford,

56/30Peter FierlingerStanford, Inelastic scattering

57/30Peter FierlingerStanford, Strategy: –Magneto-gravitational trapping of UCN, avoiding wall collisions –No losses due to depolarisation (?), but: –Control of losses –In-situ measurement of N(t) using proton detectors [F.J. Hartmann, I. Altarev, S. Paul et al., TU München, E18] Setup of the trap with permanent magnets Magnetic storage (TU München, PNPI) TAKEN FROM O: ZIMMER [O. Zimmer, JP G 26 (2000) 67-77] UCN density at FRM II: 10 4 cm -3 (at ILL: 50 cm -3 )

58/30Peter FierlingerStanford, Superthermal converters Superfluid He – zero absorption cross section but needs very low temperatures ( ~ 0.5 K) (NIST, ILL, SNS) Solid D 2 – absorption lifetime 150 ms, 2 orders of magnitude higher production rate as compared with He, temperature of ~ 8K sufficient (Munich, Los Alamos, PSI) Solid CD 4 – compared with D 2 more low lying rotational states – investigations at the very beginning Solid O 2 – phonons and magnons excitation but temperatures below 2K needed

59/30Peter FierlingerStanford, Deuterium D2 nuclear spin : S = 0,2 (ortho) and S = 1(para) Ortho-D2 : J = 0,2,4 …(rotational quantum number) Para-D2 : J = 1,3,5… Energy of the lowest rotational state: –Para-D2 J =1 E = 7.5 meV –Ortho-D2 J = 0 E = 0 meV Importance of high ortho-D2 concentration Additional up-scattering channel !

60/30Peter FierlingerStanford, sD 2 Moderator liquidsolid Slow freezing around triple point

61/30Peter FierlingerStanford, UCN Extraction  = 30ms v = 5m/s Attenuation length = 150mm mono sD 2 crystal real sD 2 crystal

62/30Peter FierlingerStanford, Raman spectra

63/30Peter FierlingerStanford, Fermipot  …range must be small for f(  )  f Many scatterers:

64/30Peter FierlingerStanford, Reflectivity At boundary: Outside Inside