Diffuse SN Neutrino Background (DSNB) in liquid Argon Cecilia Lunardini Arizona State University.

Slides:



Advertisements
Similar presentations
Precision Neutrino Oscillation Measurements & the Neutrino Factory Scoping Study for a Future Accelerator Neutrino Complex – Discussion Meeting Steve Geer,
Advertisements

New Large* Neutrino Detectors
Dark Matter Annihilation in the Milky Way Halo Shunsaku Horiuchi (Tokyo) Hasan Yuksel (Ohio State) John Beacom (Ohio State) Shin’ichiro Ando (Caltech)
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Search for spontaneous muon emission from lead nuclei with OPERA bricks M. Giorgini, V. Popa Bologna Group OPERA Collaboration Meeting, LNGS, 19-22/05/2003.
Supernova Relic Neutrinos at Super-Kamiokande Kirk Bays University of California, Irvine 1TAUP 2011.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Sinergia strategy meeting of Swiss neutrino groups Mark A. Rayner – Université de Genève 10 th July 2014, Bern Hyper-Kamiokande 1 – 2 km detector Hyper-Kamiokande.
Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Shoei NAKAYAMA (ICRR) for Super-Kamiokande Collaboration December 9, RCCN International Workshop Effect of solar terms to  23 determination in.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
TAUP Searches for nucleon decay and n-n oscillation in Super-Kamiokande Jun Kameda (ICRR, Univ. of Tokyo) for Super-Kamiokande collaboration Sep.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
Unofficial* summary of the Long Baseline Neutrino Experiment (LBNE) physics workshop Seattle, Aug 9 to Aug 11 David Webber August 24, 2010 *Many studies/plots.
Steve Geer IDS Meeting CERN March Neutral Currents and Tests of 3-neutrino Unitarity in Long-Baseline Exeriments Steve Geer Barger, Geer, Whisnant,
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Low scale gravity black holes at LHC Enikő Regős ( CERN )
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University CIPANP, June 2012.
Robert Cooper. What is CENNS? Coherent Elastic Neutrino-Nucleus Scattering To probe a “large” nucleus Recoil energy small Differential energy spectrum.
RESCEU Symposium, University of Tokyo, November 2008John Beacom, The Ohio State University The Diffuse Supernova Neutrino Background John Beacom The Ohio.
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Diffuse supernova neutrinos Cecilia Lunardini Arizona State University And RIKEN BNL Research Center.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
Waseda univ. Yamada lab. D1 Chinami Kato
Core-Collapse Supernovae and Supernova Relic Neutrinos
Astrophysical Constraints on Secret Neutrino Interactions
Jonathan Davis King’s College London
The Diffuse Flux of Supernova Neutrinos
SOLAR ATMOSPHERE NEUTRINOS
Neutrino astronomy Measuring the Sun’s Core
Solar & Supernova Neutrinos Detection Methods and Prospects
Physics with the ICARUS T1800 detector
SOLAR ATMOSPHERE NEUTRINOS
Neutrinos as probes of ultra-high energy astrophysical phenomena
Neutrino astrophysics
The neutrino mass hierarchy and supernova n
Davide Franco for the Borexino Collaboration Milano University & INFN
Feasibility of geochemical galactic neutrino flux measurement
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

Diffuse SN Neutrino Background (DSNB) in liquid Argon Cecilia Lunardini Arizona State University

Agenda O Introduction O theory and motivation O current upper bounds O O detectability O physics potential O discussion: theory needs

Introduction theory and motivation current upper bounds

Neutrinos from cosmological SNe O diffuse flux from all supernovae O ~ 40% cosmological O dominated by z>1 at E = 10 MeV total z = 0 – 1 z = 1 – 2 z = 2 – 3

Unique physics potential O new, guaranteed flux O first neutrino picture of SN population (true tracer of core collapse) O diversity (rare types: failed SN, ONeMg,..) O Typical spectrum parameters O SN history at high z O cosmological neutrino detection O new physics over cosmological base-line

Why important for DUNE? O unique potential for ν e O might be first observation of neutrinos (not anti- neutrinos) from SNe O probe the population-averaged ν e, ν x spectrum O important for synthesis of heavy elements O test oscillations/new physics in neutrino channel

C.J. Horowitz, Phys.Rev. D65 (2002)

Main ingredients Cosmological rate of supernovae Neutrino flux at production + Oscillations Redshift E’ = E(1+z) Cosmology Ando & Sato, 2004, New J. Phys. 6, 170, Lunardini arXiv: , Beacom Ann.Rev.Nucl.Part.Sci. 60 (2010)

Cosmological SN rate O grows with ~ (1+z) 3.3 O factor ~ 2 discrepancy at z=0 O direct counting vs star formation rate estimate Hopkins & Beacom, 2006, ApJ. 651, 142, Horiuchi, Beacom & Dwek, 2009, PRD79, , Madau & Dickinson, Ann.Rev.Astron.Astrophys. 52 (2014), Horiuchi et al., ApJ. 738 (2011), Cappellaro et al., arxiv: from star formation rate from SN observations

Flux at production O alpha-spectrum: Keil, Raffelt & Janka, 2003, Astrophys. J. 590, 971 x=μ,τ

Oscillations O permutation : O averaged probabilities: matter (MSW) driven p ~ 0 ~ 0.32 C.L. & I. Tamborra, JCAP 1207 (2012) no oscill. MSW only MSW + collective

Effective description O unoscillated alpha-spectrum with effective E 0 and α effective, E 0 = 15.7 MeV mixed, E0e = 12 MeV, E0x=18 MeV

O anti-nue, inverse beta decay search: O nue, indirect from anti-nue limit: O from maximizing the ratio of nue/anti-nue fluxes, after oscillations Super-K limits Bays et al., Phys. Rev. D 85, , 2011 C.L., Phys.Rev. D73 (2006), updated

natural region α =2 α =4 α =2 α =4 C.L and A. Warren, in preparation nue anti-nue

Near future searches technologymassReactionEnergy window Events/(1 0 yrs) Liquid Argon (DUNE) 40 ktnue + Ar, CC (100% eff.) MeV~ Water + Gadolinium (GADZOOKS!) 22.5 ktAnti-nue, inverse beta 11 – 40 MeV Liquid Scint. (JUNO, RENO- 50) 17 ktAnti-nue, inverse beta 11 – 40 MeV for moderately conservative SN rate, R SN (z=0) = yr -1 Mpc -3

detectability

Cross section Suzuki & Honma, 2013 Kolbe et al., 2003 Kolbe, Langanke, Martinez-Pinedo and Vogel P 2003 J. Phys. G Suzuki & Honma, Phys.Rev. C87 (2013) 1, ~ + 40% nue + Ar, CC

Energy window: ~ 19 – 40 MeV O hep solar neutrinos, E < 19 MeV O atmospheric neutrinos, latitude dependent O from FLUKA (rescaled by 1.5 for latitude) M. Vagins, LBNE working group, 2010Battistoni et al., Astropart. Phys. 23, 2005

DUNE-specific backgrounds  nuclear recoil from fast neutron O distinguishable topology  cosmic muon decays O distinguishable topology  spallation products O below energy window  radioactive impurities, particle misidentification, various technical issues, etc. O distinguishable or below energy window Cocco et al., JCAP 0412 (2004) 002, M. Vagins, LBNE topical group report, 2010

Event rates

p=0.32

E/MeVHotWarmColdatmospheric p =0.32, t= 10 years E/MeVHotWarmColdatmospheric p =0, t= 10 years Kolbe et al cross section moderately conservative SN rate, R SN (z=0) = yr -1 Mpc -3

LAr 34 kt MeV DSNB atmos. Homestake atmos. SuperK Effective α -spectrum α = 1.8 (optimistic) optimistic SNR “natural” range

DSNB + atmos. 3 σ atmos. Homestake “natural” range

Increasing α ; α = 2 -4 DSNB atmos. Homestake

LAr 34 kt MeV DSNB atmos. Homestake Effective α -spectrum α = 1.8 (optimistic) optimistic SNR “natural” range

DSNB + atmos. 3 σ atmos. Homestake “natural” range

Increasing α ; α = 2 -4 atmos. Homestake

ν e s ensitivity summary natural region α =2 α =4 DUNE, 10 years E = 19 – 29 MeV probability of background only : < C.L and A. Warren, in preparation

physics potential

Basic spectrum information O Main testable parameter : CL, PRD75 (2007) …. no results available, future work.

Failed SNe? O direct collapse into black hole O up to 50% of all collapses O appear in SN simulations O more luminous, hotter spectrum! Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, (2006), T. Fischer et al., (2008), ; K. Nakazato et al., PRD78, (2008); nue anti-nue nux

O up to factor ~ 2 enhancement O spectral distortion f NS =0.78 f NS =0.91 CL, PRL 102, , 2009 J. Keehn & CL, PRD85 (2012) BH NS

BH total

History of core collapse O test z -evolution of rate of all collapses O including failed, faint, obscured SNe No evolution

Physics beyond the SM O neutrino decay O DSNB sensitivity : τ /m>10 10 s eV -1 O current: τ /m>10 5 s eV -1 (SN1987A) Ando, PLB 570, 11 (2003) Fogli et al., PRD 70, (2004)

O exotic absorption O test of dark energy Goldberg, Perez and Sarcevic, JHEP 0611, 023 (2006) Farzan and S. Palomares-Ruiz, JCAP 1406, 014 (2014) Hall et al., hep-ph/

O mimicking the DSNB : O DM decay/annihilation O exotic solar antineutrinos Palomares-Ruiz and Pascoli, PRDD 77, (2008) Palomares-Ruiz, PLB 665, 50 (2008) Bernal, Martn-Albo and Palomares-Ruiz, JCAP 1308, 011 (2013) Raffelt and Rashba, Phys. Atom. Nucl. 73, 609 (2010)

Discussion theory needs

Summary: O in 10 years, DUNE can test a substantial part of the parameter space O if background conditions are ideal O unique nue sensitivity : complementary to SuperK-Gd and JUNO O main physics potential O nue spectrum (to be studied) O phenomenology of cosmological and/or failed/faint/obscured SNe

Theory needs O precise nue Ar CC cross section, differential in electron energy O site-specific low energy atmospheric neutrino modeling O detailed detector-specific backgrounds O creative background reduction (directionality?)

Backup

No nuclear recoils from fast neutrons will be able to produce an event which looks like a single electron in the energy window. Unlike in water Cherenkov detectors, liquid argon detectors do not suffer from sub-Cherenkov muons decaying into electrons and faking the SRN signal, as no muons (or evidence of their decays) should escape detection in the detector. No spallation products will be produced which generate electrons in the energy range of interest without clear evidence of their parent muon allowing the event to be removed from consideration. The full family of spallation daughters of argon does not seem to be known, but it must include all possible oxygen spallation products, e.g. 11 Li, a  - emitter, Q = 20.6 MeV. No radioactive background or impurity, electronic effect in the detector, track-finding inefficiency, particle misidentification, or failed event reconstruction will ever be able to lead to a signal in the energy range of interest. M. Vagins, LBNE topical group report, 2010

Failed SNe? direct collapse into black hole – up to 50% of all collapses – appear in SN simulations – explain the missing progenitor problem? Smartt, Publications of the Astronomical Society of Australia, Vol. 32, (2015)

O matter-driven (MSW) oscillations dominate the burst- integrated flux

other effects are ~10% or less – Basic sensitivity to MSW-oscillated spectra a) t=0.5 pb spectrum, M=10.8 Msun, no oscillations b) t-integrated spectrum, M=10.8 Msun, no oscillations c) t-integrated spectrum, M=10.8 Msun, with MSW oscillations d) t-integrated spectrum, M=10.8 Msun, MSW + collective oscilations e) t-integrated spectrum, all masses, MSW + collective oscilations f) Same as e) for suppressed SNR normalization Error bars: conservative uncertainty due to SNR error

Questions that can be answered O Do supernovae emit ν e ? O only antineutrinos seen from SN1987A O Does the SN rate increase with z ? O uncertain from astrophysics O Are SNe at z > 1 ? O not seen astronomically!

FAQs O what if we see a galactic SN? Will the DSNB be useless? O NO, a galactic SN is just one, the DSNB is a picture of the whole population, including dark SN, ONeMg SN, high z SN, low- or zero- metallicity SN, etc. O data from local SN will remove degeneracies to extract SN population parameters (rate, etc.)

LAr 10 kt MeV DSNB atmos. Homestake atmos. SuperK Effective α -spectrum α = 1.8 Highest SNR “natural” range Atmospheric from FLUKA, Battistoni et al., 2005

DSNB + atmos. 3 σ

Potential? O upper bounds O ~ 3 σ discovery for fortunate scenarios O uncertainties might help O for NH (p=0), ν e flux is higher than anti- ν e ! O statistics barely enough O need to know all backgrounds very well

Spectrum tail ? O no SN1987A data at E> 40 MeV

No tail beyond 40 MeV

Uncertainties, degeneracies Large (~20% or more) small (~ 10% or less) Degenerate? Avg. energy E 0 X with α (quasi) luminosityXWith SNR norm. α parameterXwith E 0 (quasi) mass hierarchyXwith E 0 (quasi) SNR power lawX SNR normaliz.XWith luminosity Prog. dependence X (?) Collective oscill. X Shock oscill. effect X

Current: upper bounds

O DUNE will be the only large LAr detector in the world O the only one capable to detect cosmological SN nu_e O first nu_e data from SNe O might be the first new data from SNe! O to not search for the DSNB is not acceptable O thousands of papers were written on 20 events from SN1987A !

C.J. Horowitz, Phys.Rev. D65 (2002) 11 B overproduction factor, Yoshida, Kajino and Hartmann, 2005 PRL