Terrance J. Codd, Mourad Roudjane, Ming-Wei Chen, and Terry A. Miller The Ohio State University
Introduction and Motivation cm -1 b cm -1 a a. R. T. Carter, K. F. Schmidt, H. Bitto, J. R. Huber, Chem. Phys. Lett., 257, (1996) b. K. Takematsu, N. C. Eddingsaas, D. J. Robichaud, M. Okumura, Chem. Phys. Lett., 555, (2013)
Previous Work a. A. Deev, J. Sommar, M. Okumura. J. Chem. Phys, 122, (2005). b. M. E. Jacox, W. E. Thompson. J. Phys. Chem. A, 114, (2010). c. K. Takematsu, N. C. Eddingsaas, D. J. Robichaud, M. Okumura, Chem. Phys. Lett., 555, (2013)
NO 3 a. M. Okumura, J. F. Stanton, A. Deev, and J. Sommar, Phys. Scr., 73, C64-C70 (2006)
a.u. wavenumber (cm -1 ) a.u. Jet-Cooled CRDS Data
wavenumber Room Temperature Jet Cooled Room Tem vs Jet Cooled Room temperature data from: A. Deev, J. Sommar, M. Okumura. J. Chem. Phys, 122, (2005).
Anharmonic Analysis We previously presented an anharmonic treatment of many of the assigned features in our spectrum a.u. wavenumber (cm -1 ) Mode exe v v v Origin RMS Error =7.35
Jahn-Teller Calculation T. A. Barckholtz, T. A. Miller, Int Rev in Phys. Chem.17, (1998)
≈ ≈ cm -1 ≈ Vibronic Structure ≈≈
≈≈ ≈ Perpendicular Bands = 2 1 vibrational frequency (vibrational symmetry ) (4 1 vibronic levels + )
≈≈ ≈ Perpendicular Bands = 2 1 vibrational frequency (vibrational symmetry ) (4 1 vibronic levels + ) a. K. Takematsu, N. C. Eddingsaas, D. J. Robichaud, M. Okumura, Chem. Phys. Lett., 555, (2013)
Coupling Strength: Possibilities We consider the possibility that the coupling could be either relatively weak or strong The majority of the band assignments do not change regardless of which case is chosen, these mostly correspond to those assignments made in the anharmonic analysis. We first look at the weak coupling assumption which largely corresponds to the analysis reported last year.
However, the band at cm -1 and two higher frequency perpendicular bands unassigned. We found no evidence of bilinear coupling between 1 and 4 as had been previously suggested to explain irregularity in the frequencies of those bands. a.u. Weak Coupling
Strong Coupling
a.u. wavenumber (cm -1 ) a.u.
Strong Coupling Low Energy ValueError 3 cm cm -1 D K cm cm -1 D K High Energy ValueError 3 cm cm -1 D K cm cm -1 D K AssignmentExperimental Low EnergyError High EnergyError Origin a a 2 '‘ a e'' ( ) a 1 '' a 1 '' e'' ( ) e'' ( ) a 1 '' e'' ( ) a 1 '' a 1 '' e'' ( ) e'' ( ) e'' ( ) a 1 '' a 1 '' a 1 '' RMS Error = 2.05RMS Error = 5.52 a. K. Takematsu, N. C. Eddingsaas, D. J. Robichaud, M. Okumura, Chem. Phys. Lett., 555, (2013)
Strong Coupling AssignmentExperimental Low EnergyError High EnergyError Origin a a 2 '‘ a e'' ( ) a 1 '' a 1 '' e'' ( ) e'' ( ) a 1 '' e'' ( ) a 1 '' a 1 '' e'' ( ) e'' ( ) e'' ( ) a 1 '' a 1 '' a 1 '' RMS Error = 2.05RMS Error = 5.52 a. K. Takematsu, N. C. Eddingsaas, D. J. Robichaud, M. Okumura, Chem. Phys. Lett., 555, (2013) Low Energy ValueError 3 cm cm -1 D K cm cm -1 D K High Energy ValueError 3 cm cm -1 D K cm cm -1 D K
3 Potential Energy Surface The JT stabilization energy (E min – E symm ) is cm -1 There is also a large pseudo-rotational barrier of 2250 cm -1 between the equivalent minima Q+Q+ Q-Q-
a.u. JT Progressions cm cm cm cm cm -1 The 4 progression is somewhat irregular as would be expected with weak JT coupling Interestingly, the progression in 4 off of the band is even more irregular and shows a large deviation from 4 alone.
Conclusions a. K. Takematsu, N. C. Eddingsaas, D. J. Robichaud, M. Okumura, Chem. Phys. Lett., 555, (2013)
Acknowledgements Terry Miller Miller Group Neal Kline Rabi Chhantyal-Pun Mourad Roudjane Meng Huang Ming-Wei Chen Mitchio Okumura for allowing the use of his data NSF - $$$ You for your attention! Currently at University of Illinois Urbana-Champaign
Jahn-Teller Theory
Jahn-Teller Hamiltonian