High-resolution Fourier transform emission spectroscopy of the A 2 + – X 2 transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro Nakashima (a), Tomoki Ogawa, Maki Matsuo, and Keiichi Tanaka Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan (a) : Ozone Layer Research Project, National Institute for Environmental Studies (NIES), National Institute for Environmental Studies (NIES), Ibaraki, Japan Ibaraki, Japan
A = 1477 cm cm -1 Introduction Influence of the large spin-orbit interaction large spin-orbit interaction on the Renner-Teller effect 2 = (20) cm cm -1 BrCN + ion Renner-Teller effect Renner-Teller effect Large spin-orbit interaction Large spin-orbit interaction X 2 Electronic ground state : X 2
Previous works 2. M. A. Hanratty et al. B 2 3/2 X 2 3/2 LIF spectra of the B 2 3/2 X 2 3/2 transition 4. C. Salud et al. Infrared diode laser spectroscopy of the 1 (CN str.) fundamental band 1 (CN str.) fundamental band X 2 3/2 of the X 2 3/2 state 1. J.Fulara et al. Low-resolution emission spectra B 2 3/2 X 2 3/2 of the B 2 3/2 X 2 3/2 and A 2 X 2 A 2 X 2 transitions A 2 + X 2 B 2 0 13,700 19,230 cm -1 (001) (002) (012) (100) 3. M. Rosslein et al. LIF spectra of the B 2 3/2 X 2 3/2 transition to determine the r s -structure r s -structure of BrCN +
Experimental He (1.0 Torr) BrCN (2-3 mTorr) resolution : 0.02 cm -1 spectral region : – cm -1 accumulation time : 40 hrs. Penning ionization He*(2 3 S) + BrCN BrCN + + He(1 1 S) (I.P.=12.08 eV)
Observed spectrum ( A 2 + - X 2 ) (010)-(000) (010)-(010) (000)-(000) (001)-(011) (010)-(001) (100)-(100) (001)-(001) =3/2 (000)-(010) A 2 + - 2 (000)-(100) =1/2 (000)-(000) (010)-(010) (001)-(001) (000)-(010) A 2 + - 2
A 2 + (000) - X 2 3/2 (000) transition P1P1 R 21 P 21 + Q 1 R 1 + Q 21
A 2 + (000) - X 2 3/2 (000) transition P 1 branch 79 BrCN + J’’=35.5J’’= BrCN + J’’=35.5J’’=39.5
Molecular constants (unit : cm -1 ) state constant =3/2 =1/2 D.L. ( =3/2) A 2 + (13) (46) B (51) 10 7 D 0.346(16) (37) X 2 B (47) (62) (41) 10 7 D 0.307(15) 0.347(11) 0.158(23) q + p/2 (11) eff A 2 + (000) – X 2 (000) transition of 79 BrCN + 79 B 000 = (32) cm B 000 = (41) cm -1 Rotational constant B 000 B 3/2 = B 000 ( 1 + B 000 /A eff ) B 1/2 = B 000 ( 1 B 000 /A eff ) eff A eff = 1/2 – 3/2 79 A eff = (48) cm A eff = (60) cm -1 Effective spin-orbit interaction constant A eff low resolution emission spectroscopy A = 1477 cm -1
r 0 -structure I = m k z k 2 0 = m k z k I = z Br 2 m Br m k m Br + m k BrCN × z Br zCzC zNzN G species electronic state r BrC r CN BrCN X 1 BrCN + X 2 1.788(54) 1.103(78) 1.745(7) a 1.195(8) a A 2 (61) 1.064(90) unit : A a : The r s -structure determined by Rosslein et al.
Main electronic configuration (3 ) 2 (1 ) 4 (4 ) 2 (2 ) 4 : BrCN (X 1 + ) (3 ) 2 (1 ) 4 (4 ) 2 (2 ) 3 : BrCN + (X 2 ) (3 ) 2 (1 ) 4 (4 ) 1 (2 ) 4 : BrCN + (A 2 + ) 4p (Br) – (CN) p z (N) (non-bonding) Geometrical change is small ! p (Br) (non-bonding)
A 2 + - 2 transition P2P2 R2R2 P 12 R 12
Molecular constants (unit : cm -1 ) state constant 2 2 A 2 + (000) (12) (21) B a 10 7 D a a X 2 (010) B (19) (25) 10 7 D (60) (58) p (27) (46) A 2 + (000) – X 2 (010) transition of 79 BrCN + Rotational constant B B 010 = (23) cm B 010 = (25) cm -1 B = B 010 [ (B 010 – /2) cos 2 ] 2 /2r B = B 010 [ (B 010 – /2) cos 2 ] 2 /2r a : Fixed to the values derived from the rotational analysis of the origin bands.
A 2 + (000) X 2 (010) 2 2 2 2 2r2r Energy difference between 2 and 2 Energy difference : 2r Energy difference : 2r 2r = [ A eff 2 + (2 2 ) 2 ] 1/2 = - 2 79 r = (24) cm r = (30) cm -1 2r > |A eff | (= cm -1 ) Small influence of the Renner-Teller effect on the X 2 state of BrCN +
Renner parameter p = 4B 010 2 /2r p = 4B 010 2 /2r state constant 79 BrCN + 81 BrCN + 2 p (27) (32) 2 p (46) (52) B (23) (25) 2r (24) (30) (20) a 79 = (27) 81 = (32) : Renner parameter p : – type doubling constant p : – type doubling constant BO 2 (X 2 ) = 0.19 CO 2 + (X 2 u ) = a : Low resolution emission spectroscopy (Fulara et al.)
Wave functions for 2 and 2 Wave functions for 2 and 2 sin 2 = 2 /2 cos 2 = A eff /2 sin 2 : cos 2 = : Large spin-orbit interaction ! Influence of the Renner-Teller effect on the X 2 state of BrCN + is small !
Summary A 2 + - X 2 transition 1. Near-infrared emission spectrum of the A 2 + - X 2 transition of the BrCN + ionFT spectroscopy. BrCN + ion was observed by FT spectroscopy. Rotational analysis 2. Rotational analysis of the four bands, A 2 + (000) - X 2 (000) ( =3/2 and 1/2 ) A 2 + (000) - 2 and A 2 + (000) - 2 , A 2 + (000) - 2 and A 2 + (000) - 2 , was performed to determine the molecular constants. geometrical difference 3. The r 0 -structures of BrCN + were obtained and geometrical difference between BrCN and BrCN + was small. between BrCN and BrCN + was small. Renner parameter = Renner parameter was determined to be = 0.185, and the influence of the Renner-Teller effect on X 2 was turned out large spin-orbit interaction to be small due to the large spin-orbit interaction.
Observed spectrum Nine vibronic bands of the A 2 + - X 2 transition Four vibronic bands of the A 2 + - X 2 transition A 2 + X 2 (000) (100) (010) (001) (100) (010) (001) 22 22 2 2 0 1,000 2,000 3,000 13,697 cm -1
BrCN + ion Renner-Teller effect Splitting of the vibronic state by the excitation of the bending vibration X 2 Electronic ground state : X 2 spin-orbit interaction Introduction Vibronic interaction
V + = a ( 1 + ) ( r) 2 + … V - = a ( 1 – ) ( r) 2 + … | |<1| |>1 NCO, N 2 O + ( X 2 ) NH 2 ( X 2 B 1, A 2 ) : Renner parameter Bending potential function
Molecular constants (unit : cm -1 ) state constant FT + D.L. D.L. LIF A 2 + 3/ (13) B (51) 10 7 D 0.346(16) (37) X 2 B 3/ (47) (41) (47) 10 7 D 0.307(15) 0.158(23) 0.86(28) state constant FT + D.L. D.L. LIF A 2 + 3/ (13) B (50) 10 7 D 0.299(16) (37) X 2 B 3/ (47) (11) (86) 10 7 D 0.262(14) 0.147(60) 1.5(56) 79 BrCN + 81 BrCN + eff A 2 + (000) – X 2 3/2 (000) transition
Molecular constants (unit : cm -1 ) state constant 79 BrCN + 81 BrCN + A 2 + 1/ (46) (59) B a a 10 7 D a a a a X 2 B 1/ (62) (67) 10 7 D 0.347(11) 0.214(16) p/2 + q (11) (15) eff 79 B 000 = (32) cm B 000 = (41) cm -1 Rotational constant B 000 B 3/2 = B 000 ( 1 + B 000 /A ) B 1/2 = B 000 ( 1 B 000 /A ) eff A 2 + (000) – X 2 1/2 (000) transition
Molecular constants (unit : cm -1 ) state constant 79 BrCN + 81 BrCN + A 2 + (12) (17) B a a 10 7 D a a a a 2 B (19) (26) 10 7 D (60) (79) p (27) (32) A 2 + - 2 state constant 79 BrCN + 81 BrCN + A 2 + (21) (25) B a a 10 7 D a a a a 2 B (25) (28) 10 7 D (58) (66) p (46) (52) A 2 + - 2
Spin-orbit interaction constant A = 1/2 – 3/2 79 A = (48) cm A = (60) cm -1 X 2 (000) A 2 + (000) X 2 X 2 3/2 1/2 A low resolution emission spectroscopy A = 1477 cm -1
A 2 + (000) - X 2 1/2 (000) transition P 2 + Q 12 R 12 + Q 2 P 12 R2R2
A 2 + - 2 transition P1P1 R1R1 P 21 R 21
Renner parameter species A eff 2 79 BrCN + (70) (27) BO 2 86.4 0.19 CNC CO 2 + 96.8 NCO 76 0.14 N 2 O + 79.7