High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.

Slides:



Advertisements
Similar presentations
FOURIER TRANSFORM EMISSION SPECTROSCOPY AND AB INITIO CALCULATIONS ON WO R. S. Ram, Department of Chemistry, University of Arizona J. Liévin, Université.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Spectroscopy of CuN in the Near Infrared by Intracavity Laser Absorption Spectroscopy Leah C. O'Brien and Kaitlin A. Womack, Department of Chemistry, Southern.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Spectroscopic Analysis Part 4 – Molecular Energy Levels and IR Spectroscopy Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
Probing the electronic structure of the Nickel Monohalides: Spectroscopy of the low-lying electronic states of NiX (X=Cl, Br, I). Lloyd Muzangwa Molecular.
ROTATIONAL AND RENNER-TELLER ANALYSES OF THE GROUND AND EXCITED STATE LEVELS OF THE JET-COOLED CS 2 ION Dennis J. Clouthier & Sheng-Gui He Department of.
DMITRY G. MELNIK AND ROBERT F. CURL, The Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77005; JINJUN LIU, JOHN T.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Brookhaven Science Associates U.S. Department of Energy Hot band transitions in CH 2 Kaori Kobayashi *, Trevor Sears, Greg Hall Department of Chemistry.
Zhong Wang, Trevor Sears Department of Chemistry, Brookhaven National Laboratory; Department of Chemistry, Stony Brook University Ju Xin Department of.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Electronic spectroscopy of CHBr and CDBr Chong Tao, Calvin Mukarakate, Mihaela Deselnicu and Scott A. Reid Department of Chemistry, Marquette University.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
GLOBAL FIT ANALYSIS OF THE FOUR LOWEST VIBRATIONAL STATES OF ETHANE: THE 12  9 BAND L. Borvayeh and N. Moazzen-Ahmadi Department of Physics and Astronomy.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Theoretical Study on Vibronic Interactions and Photophysics of Low-lying Excited Electronic States of Polycyclic Aromatic Hydrocarbons S. Nagaprasad Reddy.
1 Intracavity Laser Absorption Spectroscopy of Nickel Fluoride in the Near-Infrared James J. O'Brien Department of Chemistry & Biochemistry University.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Feb High-resolution Fourier transform emission spectroscopic study of the molecular ions Yoshihiro Nakashima.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
A NEW ANALYSIS OF A VERY OLD SPECTRUM: THE HIGHLY PERTURBED A 2  i – X 2  i BAND SYSTEM OF THE CHLORINE CATION (Cl 2 ) Mohammed A. Gharaibeh and Dennis.
HIGH RESOLUTION LASER SPECTROSCOPY OF IRIDIUM MONOFLUORIDE AND IRIDIUM MONOCHLORIDE A.G. ADAM, L. E. DOWNIE, S. J. FORAN, A. D. GRANGER, D. FORTHOMME,
Study of the CH 2 I + O 2 Reaction with a Step-scan Fourier-transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH 2 OO and.
A Laser-induced Fluorescence Spectroscopy Study of Rhodium Monosulfide Runhua Li and Walter J. Balfour Department of Chemistry, University of Victoria.
Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN the Dissociation Limit. Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN Above the Dissociation.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Bob Grimminger, Jie Wei, Blaine Ellis, and Dennis J. Clouthier Department of Chemistry, University of Kentucky, Lexington, KY Zhong Wang, and Trevor Sears.
Observation of the forbidden transitions between the A 1  u and b 3  g - states of C 2 Graduate School of Natural Science and Technology Okayama Univ.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
LASER-INDUCED FLUORESCENCE STUDIES OF THE JET-COOLED CARBON DIOXIDE AND NITROUS OXIDE CATIONS June Mohammed A. Gharaibeh and Dennis J. Clouthier.
Chong Tao, Calvin Mukarakate, Scott A. Reid Marquette University Richard H. Judge University of Wisconsin-Parkside 63 rd International Symposium on Molecular.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Time-resolved infrared diode laser spectroscopy of the n1 band of CoNO
Analysis of bands of the 405 nm electronic transition of C3Ar
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
The Rovibronic Spectra of The Cyclopentadienyl Radical (C5H5)
Wendy W. Chen, Thomas C. Galvin, Thomas J. Houlahan, and J. Gary Eden
M. VERVLOET, M. A. MARTIN-DRUMEL., D. W. TOKARYK, O. PIRALI
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
ADINA INSTITUTE OF SCIENCE AND TECHNOLOGY
CHONG TAO, D. BRUSSE, Y. MISHCHENKO, C. MUKARAKATE and S. A. REID,
Fourier Transform Emission Spectroscopy of CoH and CoD
High-resolution Laser Spectroscopy
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Electronic spectroscopy of DCF
Presentation transcript:

High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro Nakashima (a), Tomoki Ogawa, Maki Matsuo, and Keiichi Tanaka Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan (a) : Ozone Layer Research Project, National Institute for Environmental Studies (NIES), National Institute for Environmental Studies (NIES), Ibaraki, Japan Ibaraki, Japan

A =  1477 cm cm -1 Introduction Influence of the large spin-orbit interaction large spin-orbit interaction on the Renner-Teller effect  2 = (20) cm cm -1 BrCN + ion Renner-Teller effect Renner-Teller effect Large spin-orbit interaction Large spin-orbit interaction X 2  Electronic ground state : X 2 

Previous works 2. M. A. Hanratty et al. B 2  3/2  X 2  3/2 LIF spectra of the B 2  3/2  X 2  3/2 transition 4. C. Salud et al. Infrared diode laser spectroscopy of the 1 (CN str.) fundamental band 1 (CN str.) fundamental band X 2  3/2 of the X 2  3/2  state 1. J.Fulara et al. Low-resolution emission spectra B 2  3/2  X 2  3/2 of the B 2  3/2  X 2  3/2 and A 2    X 2  A 2    X 2  transitions A 2  + X 2   B 2   0 13,700 19,230 cm -1 (001) (002) (012) (100) 3. M. Rosslein et al. LIF spectra of the B 2  3/2  X 2  3/2 transition to determine the r s -structure r s -structure of BrCN +

Experimental He (1.0 Torr) BrCN (2-3 mTorr) resolution : 0.02 cm -1 spectral region : – cm -1 accumulation time : 40 hrs. Penning ionization He*(2 3 S) + BrCN BrCN + + He(1 1 S) (I.P.=12.08 eV)

Observed spectrum ( A 2  + - X 2   ) (010)-(000) (010)-(010) (000)-(000) (001)-(011) (010)-(001) (100)-(100) (001)-(001)  =3/2 (000)-(010) A 2  + -  2  (000)-(100)  =1/2 (000)-(000) (010)-(010) (001)-(001) (000)-(010) A 2  + -  2 

A 2  + (000) - X 2  3/2 (000) transition P1P1 R 21 P 21 + Q 1 R 1 + Q 21

A 2  + (000) - X 2  3/2 (000) transition P 1 branch 79 BrCN + J’’=35.5J’’= BrCN + J’’=35.5J’’=39.5

Molecular constants (unit : cm -1 ) state constant  =3/2  =1/2 D.L. (  =3/2) A 2  +  (13) (46) B (51) 10 7 D 0.346(16)  (37) X 2   B  (47) (62) (41) 10 7 D 0.307(15) 0.347(11) 0.158(23)  q + p/2  (11) eff A 2  + (000) – X 2   (000) transition of 79 BrCN + 79 B 000 = (32) cm B 000 = (41) cm -1 Rotational constant B 000 B 3/2 = B 000 ( 1 + B 000 /A eff ) B 1/2 = B 000 ( 1  B 000 /A eff ) eff A eff = 1/2 – 3/2 79 A eff =  (48) cm A eff =  (60) cm -1 Effective spin-orbit interaction constant A eff low resolution emission spectroscopy A =  1477 cm -1

r 0 -structure I =  m k z k 2 0 =  m k z k  I = z Br 2  m Br  m k  m Br +  m k BrCN × z Br zCzC zNzN G species electronic state r BrC r CN BrCN X 1  BrCN + X 2  1.788(54) 1.103(78) 1.745(7) a 1.195(8) a A 2  (61) 1.064(90) unit : A a : The r s -structure determined by Rosslein et al.

Main electronic configuration (3  ) 2 (1  ) 4 (4  ) 2 (2  ) 4 : BrCN (X 1  + ) (3  ) 2 (1  ) 4 (4  ) 2 (2  ) 3 : BrCN + (X 2  ) (3  ) 2 (1  ) 4 (4  ) 1 (2  ) 4 : BrCN + (A 2  + ) 4p (Br) –  (CN) p z (N) (non-bonding) Geometrical change is small ! p (Br) (non-bonding)

A 2  + -  2  transition P2P2 R2R2 P 12 R 12

Molecular constants (unit : cm -1 ) state constant  2   2  A 2  + (000) (12) (21) B a 10 7 D a  a X 2  (010)  B (19) (25) 10 7 D (60) (58) p  (27)  (46) A 2  + (000) – X 2   (010) transition of 79 BrCN + Rotational constant B B 010 = (23) cm B 010 = (25) cm -1 B  = B 010  [ (B 010 –  /2) cos 2  ] 2 /2r B  = B 010  [ (B 010 –  /2) cos 2  ] 2 /2r a : Fixed to the values derived from the rotational analysis of the origin bands.

A 2  + (000) X 2  (010)  2 2  2 2 2r2r Energy difference between  2  and  2  Energy difference : 2r Energy difference : 2r 2r = [ A eff 2 + (2  2 ) 2 ] 1/2 =  -  2 79 r = (24) cm r = (30) cm -1   2r > |A eff | (= cm -1 ) Small influence of the Renner-Teller effect on the X 2  state of BrCN +

Renner parameter  p = 4B 010  2 /2r p = 4B 010  2 /2r state constant 79 BrCN + 81 BrCN +  2  p  (27)  (32)  2  p  (46)  (52) B (23) (25) 2r (24) (30)  (20) a 79  =  (27) 81  =  (32)  : Renner parameter p :  –  type doubling constant p :  –  type doubling constant BO 2 (X 2  )  =  0.19 CO 2 + (X 2  u )  =  a : Low resolution emission spectroscopy (Fulara et al.)

Wave functions for  2  and  2  Wave functions for  2  and  2  sin 2  =  2 /2 cos 2  = A eff /2 sin 2  : cos 2  = : Large spin-orbit interaction ! Influence of the Renner-Teller effect on the X 2  state of BrCN + is small !

Summary A 2  + - X 2  transition 1. Near-infrared emission spectrum of the A 2  + - X 2  transition of the BrCN + ionFT spectroscopy. BrCN + ion was observed by FT spectroscopy. Rotational analysis 2. Rotational analysis of the four bands, A 2  + (000) - X 2   (000) (  =3/2 and 1/2 ) A 2  + (000) -  2  and A 2  + (000) -  2 , A 2  + (000) -  2  and A 2  + (000) -  2 , was performed to determine the molecular constants. geometrical difference 3. The r 0 -structures of BrCN + were obtained and geometrical difference between BrCN and BrCN + was small. between BrCN and BrCN + was small. Renner parameter  =  Renner parameter was determined to be  =  0.185, and the influence of the Renner-Teller effect on X 2  was turned out large spin-orbit interaction to be small due to the large spin-orbit interaction.

Observed spectrum Nine vibronic bands of the A 2  + - X 2   transition Four vibronic bands of the A 2  + - X 2   transition A 2  + X 2  (000) (100) (010) (001) (100) (010) (001) 22 22 2   2   0 1,000 2,000 3,000 13,697 cm -1

BrCN + ion Renner-Teller effect Splitting of the vibronic state by the excitation of the bending vibration X 2  Electronic ground state : X 2  spin-orbit interaction Introduction Vibronic interaction

V + = a ( 1 +  ) (  r) 2 + … V - = a ( 1 –  ) (  r) 2 + … |  |<1|  |>1 NCO, N 2 O + ( X 2  ) NH 2 ( X 2 B 1, A 2  )  : Renner parameter Bending potential function

Molecular constants (unit : cm -1 ) state constant FT + D.L. D.L. LIF A 2  + 3/ (13) B (51) 10 7 D 0.346(16)  (37) X 2   B 3/ (47) (41) (47) 10 7 D 0.307(15) 0.158(23) 0.86(28) state constant FT + D.L. D.L. LIF A 2  + 3/ (13) B (50) 10 7 D 0.299(16)  (37) X 2   B 3/ (47) (11) (86) 10 7 D 0.262(14) 0.147(60) 1.5(56) 79 BrCN + 81 BrCN + eff A 2  + (000) – X 2  3/2 (000) transition

Molecular constants (unit : cm -1 ) state constant 79 BrCN + 81 BrCN + A 2  + 1/ (46) (59) B a a 10 7 D a a  a  a X 2   B 1/ (62) (67) 10 7 D 0.347(11) 0.214(16) p/2 + q (11) (15) eff 79 B 000 = (32) cm B 000 = (41) cm -1 Rotational constant B 000 B 3/2 = B 000 ( 1 + B 000 /A ) B 1/2 = B 000 ( 1  B 000 /A ) eff A 2  + (000) – X 2  1/2 (000) transition

Molecular constants (unit : cm -1 ) state constant 79 BrCN + 81 BrCN + A 2  +  (12) (17) B a a 10 7 D a a  a  a  2  B  (19) (26) 10 7 D (60) (79) p  (27)  (32) A 2  + -  2  state constant 79 BrCN + 81 BrCN + A 2  +  (21) (25) B a a 10 7 D a a  a  a  2  B  (25) (28) 10 7 D (58) (66) p  (46)  (52) A 2  + -  2 

Spin-orbit interaction constant A = 1/2 – 3/2 79 A =  (48) cm A =  (60) cm -1 X 2  (000) A 2  + (000) X 2   X 2   3/2 1/2 A low resolution emission spectroscopy A =  1477 cm -1

A 2  + (000) - X 2  1/2 (000) transition P 2 + Q 12 R 12 + Q 2 P 12 R2R2

A 2  + -  2  transition P1P1 R1R1 P 21 R 21

Renner parameter species A eff  2  79 BrCN +   (70)  (27) BO 2   86.4  0.19 CNC CO 2 +   96.8  NCO   76  0.14 N 2 O +   79.7 