B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Benno Schmeing University of Bonn, IGG Benno Schmeing University.

Slides:



Advertisements
Similar presentations
Site Calibration for 3D GPS Operations
Advertisements

The Geoscience Australia’s Online GPS Processing Service (AUSPOS)
Distance Reductions. Objectives After this lecture you will be able to: n Determine the spheroidal distance between two points on Earth’s surface from.
ADJUSTMENT COMPUTATIONS
Errors and Horizontal distance measurement
Surveying I. Lecture 4..
Surveying I. Lecture 2..
On the alternative approaches to ITRF formulation. A theoretical comparison. Department of Geodesy and Surveying Aristotle University of Thessaloniki Athanasios.
Intelligent Systems Lab. Extrinsic Self Calibration of a Camera and a 3D Laser Range Finder from Natural Scenes Davide Scaramuzza, Ahad Harati, and Roland.
Distance observations
Class 25: Even More Corrections and Survey Networks Project Planning 21 April 2008.
Wolfgang Niemeier Hamburg, Sept. 15, 2010 Tutorial: Error Theory and Adjustment of Networks Institut für Geodäsie und Photogrammetrie.
Inversion of Z-Axis Tipper Electromagnetic (Z-TEM)‏ Data The UBC Geophysical Inversion Facility Elliot Holtham and Douglas Oldenburg.
Datum Transformation and Coordinate Conversion. Cartesian Coordinate System Y Z X Ellipsoid sized a & f WGS -84 is Earth Centered Earth Fixed; Origin.
The Daya Bay Reactor Neutrino Experiment The Alignment Measurement for The Daya Bay Reactor Neutrino Detector Accelerator center of IHEP Luo tao
NGS Status Report to GGOS Bureau for Networks and Communications Dru Smith Kendall Fancher Giovanni Sella GGOS Bureau for Networks and Communications 10/15/20101.
GPS Accuracy Testing Using: “RTK” (Real Time Kinematic) & “One Step Transformations” (Site Calibrations)
An Automatic Instrument to Measure the Absolute Components of the Earth's Magnetic Field H.-U. Auster, M. Mandea, A. Hemshorn, E. Pulz, M. Korte.
IGS Analysis Center Workshop, Miami Beach, 2-6 June 2008 M. Fritsche, R. Dietrich, A. Rülke Institut für Planetare Geodäsie (IPG), Technische Universität.
Recent IERS Site Survey of Multiple Co-located Geodetic Techniques by NGS Kendall Fancher, Dru Smith, Steve Breidenbach, Jeff Olsen, Nagendra Paudel NOAA’s.
Surveying I. Lecture 13. Tacheometry.
Mission Planning and SP1. Outline of Session n Standards n Errors n Planning n Network Design n Adjustment.
1 SVY207: Lecture 18 Network Solutions Given many GPS solutions for vectors between pairs of observed stations Compute a unique network solution (for many.
Inklinometri Uredjaj za merenje promene nagiba u odnosu na horizont Princip trigonometrijskog određivanja Tačnost do deg kamere, kompenzatori i drugi.
NGS GPS ORBIT DETERMINATION Positioning America for the Future NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic.
Space Geodesy (1/3) Geodesy provides a foundation for all Earth observations Space geodesy is the use of precise measurements between space objects (e.g.,
Recent GNSS Activities at Geoscience Australia Gary Johnston, Guorong Hu, Anna Riddell Geodesy & Seismic Monitoring Branch, Geoscience Australia.
AUSTRALIAN LOCAL TIE SURVEYS. 27 May 2004 PLAN OF PRESENTATION Stromlo Network Design Monument Design Calibration Targets Instrumentation and Methodology.
IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches.
1 AOGS 2012, Singapore, Aug 13-17, 2012 Surveying co-located GNSS/VLBI/SLR Stations In China Xiuqiang Gong, Yunzhong Shen, Junping Chen, Bin Wu Shanghai.
SPACE GEODESY NETWORK & ITRF Z Minchul LEE 1.
GOCE Workshop at ESA LP Symposium, Bergen, 29./30.June, 2010 Precise Science Orbits for the GOCE Satellite – Aiming at the cm-level H. Bock 1, A. Jäggi.
GNSS Absolute Antenna Calibration at the National Geodetic Survey Gerald L Mader 2, Andria L Bilich 1 1 National Geodetic Survey, NOAA/NOS, Boulder CO;
© NERC All rights reserved Measuring the Earth’s Magnetic Field Chris Turbitt.
A comparison of the ability of artificial neural network and polynomial fitting was carried out in order to model the horizontal deformation field. It.
Assessment of Reference Frame Stability trough offset detection in GPS coordinate time series Dragan Blagojević 1), Goran Todorović 2), Violeta Vasilić.
APPLICATION OF GPS TECHNOLOGY TO ARCHAEOLOGY GROUP PROJECT.
The geometry of the system consisting of the hyperbolic mirror and the CCD camera is shown to the right. The points on the mirror surface can be expressed.
Three-Method Absolute Antenna Calibration Comparison Andria Bilich (1), Martin Schmitz (2), Barbara Görres (3), Philipp Zeimetz (3), Gerald Mader (1),
Technical Specifications for Monitoring Ground Displacements at a National Highway Project K. Lakakis, P. Savvaidis and I. Ifadis Laboratory of Geodesy.
University of Ostrava Czech republic 26-31, March, 2012.
Global VLBI Solution IGG05R01 1 Institute of Geodesy and Geophysics (IGG), Vienna, Austria 2 German Geodetic Research Institute (DGFI), Munich, Germany.
ILC Main Linac Alignment Simulations John Dale 2009 Linear Collider Workshop of the Americas.
Survey, Alignment and Metrology Fiducials Requirements Fabien Rey ESS Survey, Alignment and Metrology Group ACCELERATOR TECHNICAL BOARD 23/09/2015.
ST236 Site Calibrations with Trimble GNSS
Chalmers University of Technology Site-Dependent Electromagnetic Effects in High-Accuracy Applications of GNSS Jan Johansson and Tong Ning Chalmers University.
Space Geodesy Facility, Herstmonceux – HERL and HERS.
Site Surveys at HartRAO NERC Space Geodesy Facility, Herstmonceux ILRS Fall 2005 Workshop 3 October 2005 Ludwig Combrinck HartRAO Space Geodesy Programme.
GPS ANTENNA CALIBRATION AT THE NATIONAL GEODETIC SURVEY Dr. Gerald L. Mader Geosciences Research Division National Geodetic Survey, NOS/NOAA Silver Spring,
Do we need WVRs for geodetic VLBI? Joerg Wresnik (1), Johannes Boehm (1), Harald Schuh (1), Arthur Niell (2) Workshop on Measurement of Atmospheric Water.
Mapping of Traffic Conditions at Downtown Thessaloniki with the Help of GPS Technology P. D. Savvaidis and K. Lakakis Aristotle University of Thessaloniki,
Armasuisse Swiss Federal Office of Topography swisstopo Determination of Tectonic Movements in the Swiss Alps using GNSS and Levelling E. Brockmann, D.
GPS Site Calibration Objectives  Explain the Co-ordinate systems used in GPS Surveying.  Explain what a calibration is.  Explain the 5 main process.
SC – VRS Network To Support Surveying and Machine Control.
Theodolite: Tachymat wild TC2002S Laser Distantiometer: Distomat Wild DI2002 Corner Cube reflector: Wild GPH1P East Up North M E 1 R N T 2 Local Survey.
Company LOGO Technology and Application of Laser Tracker in Large Space Measurement Yang Fan, Li Guangyun, Fan Baixing IWAA2014 in Beijing, China Zhengzhou.
1 Research on laser tracker measurement accuracy and data processing Liang Jing IHEP,CHINA
Integrating LiDAR Intensity and Elevation Data for Terrain Characterization in a Forested Area Cheng Wang and Nancy F. Glenn IEEE GEOSCIENCE AND REMOTE.
In Compass survey chain or tape is used for linear measurements and compass is used for fixing direction. In compass freely suspended.
Distance Reductions.
Site survey and co-location
Miscellaneous Measurements
Application and Research on the 3-D adjustment of control network in particle accelerator Luo Tao
Recent developments on micro-triangulation
Detail Surveys, Tacheometry, Total Stations
Continued Monitoring to calculate the local tie GNSS-VLBI.
ILC Main Linac Alignment Simulations
Surveying I. Lecture 13. Tacheometry.
Survey Networks Theory, Design and Testing
Geodesy Mark Jones EN/SMM-HPA
Presentation transcript:

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Benno Schmeing University of Bonn, IGG Benno Schmeing University of Bonn, IGG automated measurement of local ties and antenna parameters Proof-of-concept demonstration automated measurement of local ties and antenna parameters Proof-of-concept demonstration

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Contents Introduction –Motivation –Objectives GGAO local site Chosen Approach –Design of the monitoring system –Measurement procedure –Mathematical model –Analysis Results –Calibration –Simulation –Measurement results

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Motivation for VLBI GGOS 2020 reduce working hours needed for determination of local ties shorten monitoring interval  here: proof-of-concept for VLBI antenna at GGAO

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Motivation

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Objectives Monitoring of VLBI antenna‘s –Reference point –Axis offset –Orientation of azimuth and elevation axes Requirements: –Accuracy < 1mm –Automatic operations –Ability to include additional sensors, e.g. GPS, SLR

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters GGAO 4 different geodetic sensors: –GPS –VLBI –SLR –DORIS Geodetic network consisting of several piers and ground markers We will concentrate on the VLBI antenna:

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system? How to identify antenna dish movement?  360° prism marks one discrete point of the dish  total station determines prism’s movement How to embed antenna parameters into (local) reference frame, e.g. to get local ties?  coordinates of piers and ground markers define local reference frame  Additionally possible: GPS sensors set up on the points How to control antenna movement?  connection to Field System computer  Field System puts movement commands into practice

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system? How to control station?  using implemented interface (Lemo-RS232 interface with GSI commands) How to achieve needed accuracy?  calibration of 360° prism’s orientation-dependent errors  correct atmospheric influence on total station measurements  eliminate instrument errors using the right measurement procedure

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters 360° prism mounted on antenna Design of the monitoring system

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system Total station(s) on piers around the antenna

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system TCA specifications: (from: 09/14/2009)

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system TCA specifications: –angle measurement accuracy: 0.15 mgon (due atmosphere influence etc reachable accuracy is somewhat lower) –distance measurement accuracy: 1 mm + 1ppm –measurement distance (ATR): 5 … 500 m –measurement time:~ 3 sec

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system Laptop as control unit for total station and antenna

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system measures to antenna controls antenna movement, measures weather directions + distances  antenna control commands  antenna positions,  weather information  marker positions, control commands

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system Measurements controlled by Laptop (with Matlab)  Field System controls antenna movement and returns antenna position  Field System provides atmospheric conditions  Total station measures marker position Data structure  Based on ASCII files  Files for … … network point coordinates and accuracy … calibration results … measurement schedules … measurement results

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system Example: antenna measurement plan

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Design of the monitoring system Example: network measurement plan

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure 1)set up total station –leveling –determine approximate orientation + position 2)target prisms on other network points –‘network measurement plans’ –provides data for exact determination of orientation (and position) 3)target prism on VLBI antenna at different azimuth and elevation positions –‘antenna measurement plans’ –measuring the marker positions at different antenna azimuth and elevation positions

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters set up total station: –levelling –determine orientation and position Measurement procedure

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Set up total station: –levelling –determine orientation and position

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Network measurements: –measure directions and distances to other network points –observationsobservations

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Antenna measurements: –measure directions and distances to antenna in different positions –observations Measurement procedure

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Antenna measurements: –measure directions and distances to antenna in different positions –observations

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Antenna measurements: –measure directions and distances to antenna in different positions –observations

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Antenna measurements: –measure directions and distances to antenna in different positions –observations

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Antenna measurements: –measure directions and distances to antenna in different positions –observations

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Antenna measurements: –measure directions and distances to antenna in different positions –observations

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement procedure Antenna measurements: –measure directions and distances to antenna in different positions –observationsobservations

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Traditional approach circle fitting: –separate antenna rotations around azimuth and elevation axis –estimation of circles described by antenna movement –reference point is projection from elevation axis onto azimuth axis

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Traditional approach circle fitting: (Johnston: The 2003 Yarragadee (Moblas 5) Local Tie Survey, GEOSCIENCE AUSTRALIA, RECORD 2004/19 )

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Mathematical model new approach [Loesler2008a, Loesler2008b]: –set of rotations and translations –describing transformation from antenna-fixed into local coordinate system –transformation parameters describe antenna characteristics

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Mathematical model

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Mathematical model a,b … marker coordinates in telescope system E,O E … rotation around elevation axis (+orientation) ecc … axis offset (eccentricity) A,O A … rotation around Azimuth axis (+orientation) P R … antenna’s reference point  … correction for non-orthogonality of axes  … correction for inclination

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Marker position (in telescope system):

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Elevation rotation:

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Axis offset (eccentricity):

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Azimuth rotation:

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Translation into local system:

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Mathematical model Observations: –Marker positions: x, y, z (by total station) –Antenna positions: A, E (by Field System) Parameters: –“antenna”: P R, ecc, , , , O A –“marker”: a, b, O E

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Mathematical model Observations: –Marker positions: x, y, z(by total station) –Antenna positions: A, E(by Field System) Parameters: –“antenna”: P R, ecc, , , , O A –“marker”: a, b, O E

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Analysis data record for local network observations: –position and target ID –horizontal + vertical direction and distance to target –instrument settings (distance corrections, serial no.) –time tag –information about atmospheric conditions data record for observations of VLBI antenna: –local network observables plus –antenna position (azimuth + elevation)

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters coordinate estimation using weak datum Analysis network measurement antenna measurement antenna parameter estimation: loesler algorithm antenna parameters Hz,V, Sd + weather data Hz,V, Sd coordinates of the marker on the VLBI antenna in the local system azimuth + elevation of antenna previous measurements point coordinates + covariance matrix

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters coordinate estimation using weak datum Analysis network measurement antenna measurement antenna parameter estimation: loesler algorithm antenna parameters Hz,V, Sd + weather data Hz,V, Sd coordinates of the marker on the VLBI antenna in the local system azimuth + elevation of antenna previous measurements point coordinates + covariance matrix

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Analysis antenna measurement

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Analysis Separate antenna parameter estimation antenna measurement Hz, V, Sd + weather data Antenna parameters in different reference frames azimuth + elevation of antenna Separate coordinate estimation Comparison of reference frame- independent parameters marker coordinates in current instrument reference frame

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters TCA 2003: –additive constant Field System: –measurement accuracy prisms for network points: –additive constant 360° prism used as marker –additive constant –orientation-dependent change of reference point Calibration

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters TCA: –additive constant Field System: –measurement accuracy (azimuth and elevation positions) prisms for network points: –additive constants 360° prism used as marker –additive constant –orientation-dependent change of reference point Calibration

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters TCA: –additive constant Field System: –measurement accuracy prisms for network points: –additive constant 360° prism used as marker –additive constant –orientation-dependent change of reference point Calibration

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters TCA: –additive constant Field System: –measurement accuracy prisms for network points: –additive constant 360° prism used as marker –additive constant –orientation-dependent change of reference point Calibration

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Calibration

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Simulation Network simulation –d–done using PANDA (commercial geodetic analysis software by Geotec GmbH) –i–input: approximate network coordinates instrument’s accuracy (0.45 mgon and 1mm+1ppm) planned measurement schedule (equivalent to carried out network measurement) –r–result: projected accuracy

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Formal errors from PANDA network simulation: Centering accuracy: –forced centering on piers:~ 0.1 mm –forced centering above ground markers: ~ 1.0 mm (x,y) ~ … cm (z) Simulation Point IDPoint name # measurements from to formal errors [mm]  x  y  z 1Pier A unnamed RM Pier C JPL West Pier B

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Accuracy of coordinates + instrument setup: Simulation Point IDPoint name # measurements from to formal errors [mm]  x  y  z 1Pier A unnamed RM Pier C JPL West Pier B

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Simulation Antenna simulation –d–done using Matlab –i–input: network coordinates + accuracy (from network simulation) measurement accuracy measurement schedules to simulate –r–result: true errors and formal errors from antenna parameter estimation for chosen settings

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Simulation Visualization of a single antenna measurement schedule

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Simulation Antenna measurement simulation settings: –  angles : 0.45 mgon –  distances : 1.0 mm –  FieldSystem : 5.0 mdeg –  marker : 0.5 mm 2 simulations: –using just one instrument position (here: point 4) –using 4 instrument positions (points 1,3,4,5)

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Simulation results (point 4): parameterTrue errorFormal errorratio ref point (x)0.1489mm0.1836mm0.81 ref point (y)0.0797mm0.1044mm0.76 ref point (z)0.1387mm0.1682mm0.82 axis offset0.1295mm0.1629mm0.80 alfa0.0655mrad0.0833mrad0.79 beta0.0339mrad0.0444mrad0.76 gamma0.1775mrad0.2283mrad0.78 azi orientation0.1440mrad0.1938mrad0.74 a0.1084mm0.1455mm0.75 b0.4638mm0.6035mm0.77 ele orientation0.0485mrad0.0591mrad0.82

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Simulation results (points 1,3,4,5): parameterTrue errorFormal errorratio ref point (x)0.0402mm0.0533mm0.73 ref point (y)0.0409mm0.0525mm0.79 ref point (z)0.0625mm0.0797mm0.78 axis offset0.0649mm0.0764mm0.85 alfa0.0205mrad0.0248mrad0.83 beta0.0189mrad0.0232mrad0.81 gamma0.0910mrad0.1120mrad0.81 azi orientation0.0789mrad0.0936mrad0.84 a0.0585mm0.0683mm0.86 b0.2533mm0.2970mm0.85 ele orientation0.0209mrad0.0272mrad0.77

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement results irregularities in results reason not found yet: –many outliers at measurement? –systematical errors? –software problems?  just preliminary results: comparison of reference-frame independent antenna parameters: –axis offset/eccentricity –correction angles –marker position: a, b, elevation orientation

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement results measurements from 4 points: –point 1 (Pier A) –point 3 (RM1) –point 4 (Pier C) –point 5 (JPL West) separate analysis of every instrument position settings: –angle measurement accuracy:0.45 mgon –distance measurement accuracy:1.00 mm –Field System accuracy:5.00 mdeg

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters geometry of the measured marker positions: Measurement results

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement results parameterEstimated values [m] & formal errors [mm] point 1point 3point 4point 5 position (x) position (y) position (z) axis offset1.9 * * * * …………… … selected estimated parameters [m] … according formal errors [mm]

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Measurement results parameterdeviations from mean & formal errorsunit point 1point 3Point 4point 5 axis offset mm alfa m° beta m° gamma m° a mm b mm ele orientation m°

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters residuals: Measurement results

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters normalized residuals: Measurement results

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Conclusions automated measurement procedure works easy operations / does not need expert surveyors projected accuracy meets goals some data anomalies need further investigation

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Future Work investigate data anomalies use several total stations simultaneously –increased data collection rate –increased accuracy replace 360° prism with target sphere –eliminates one possible source of error –no limitations on observing angle apply the approach to SLR

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Bibliography Loesler2008a Loesler, M. and M. Hennes (May 2008): An innovative mathematical solution for a time-efficient IVS reference point determination In MEASURING THE CHANGES – 13 th FIG Symposium on Deformation Measurement and Analysis, 4 th IAG Symposium on Geodesy for Geotechnical and Structural Engineering Geodetic Institute of Karlsruhe (TH), Germany Loesler2008b Loesler, M. (2008): Reference point determination with a new mathematical model at the 20 m VLBI telescope in Wettzell Journal of Applied Geodesy, pages

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters Acknowledgements Honeywell Technical Solutions Inc. –supply of robotic total station TCA 2003 NGS –calibration facility at Corbin Jim Long, Jay Redmond, Mark Evangelista and Irv Diegel (Honeywell) –site and equipment support

B. S. Schmeing 23-September-2009 Automated measurement of local ties and antenna parameters The End Thank you for your attention.