P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October 20141 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

of Single-Type-Column 3D silicon detectors
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFET (3) SD Lab. SOGANG Univ. BYUNGSOO KIM.
Silicon Preshower for the CMS: BARC Participation
F.R.Palomo, et al.MOS Capacitor DDD Dosimeter 1/13 RD50 Workshop - CERN – November 2012 MOS Capacitor Displacement Damage Dose (DDD) Dosimeter F.R.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFETs SD Lab. SOGANG Univ. Doohyung Cho.
EE466: VLSI Design Lecture 02 Non Ideal Effects in MOSFETs.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Breakdown Voltage(1) SD Lab. SOGANG Univ. Doohyung Cho.
Alternative technologies for Low Resistance Strip Sensors (LowR) at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) M. Ullán, V. Benítez, J. Montserrat,
Test of Pixel Sensors for the CMS experiment Amitava Roy Purdue University.
For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN © 2002.
Simulation of Radiation Effects on Semiconductors
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Optional Reading: Pierret 4; Hu 3
New Technological Capabilities at CNM25 th RD50 Workshop. CERN, November 19th-21th, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Katedra Experimentálnej Fyziky Bipolar technology - the size of bipolar transistors must be reduced to meet the high-density requirement Figure illustrates.
Haga clic para modificar el estilo de texto del patrón Progress on p-type isolation technology M. Lozano, F. Campabadal, C. Fleta, S. Martí *, M. Miñano.
Pentagonal Group Standard Bipolar Process. HISTORY of SEMICONDUCTOR Evolved rapidly over the past 50 years 1 st practical analog integrated circuits appeared.
P-N Junctions Physical aspects of pn junctions Mathematical models Depletion capacitance Breakdown characteristics Basis for other devices Circuit Symbol.
MOHD YASIR M.Tech. I Semester Electronics Engg. Deptt. ZHCET, AMU.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
IC Process Integration
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.
SILICON DETECTORS PART I Characteristics on semiconductors.
M. Lozano, C. Fleta*, G. Pellegrini, M. Ullán, F. Campabadal, J. M. Rafí CNM-IMB (CSIC), Barcelona, Spain (*) Currently at University of Glasgow, UK S.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #3. Diffusion  Introduction  Diffusion Process  Diffusion Mechanisms  Why Diffusion?  Diffusion Technology.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Silicon detector processing and technology: Part II
16 sept G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Status report on A 2D position sensitive microstrip sensor with charge division. A segmented Low Gain Avalanche Detector for tracking E. Currás, M. Fernández,
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
N. Zorzi Trento, Feb 28 – Mar 1, 2005 Workshop on p-type detectors Characterization of n-on-p devices fabricated at ITC-irst Nicola Zorzi ITC-irst - Trento.
NMOS FABRICATION 1. Processing is carried out on a thin wafer cut from a single crystal of silicon of high purity into which the required p-impurities.
25th RD50 Workshop (Bucharest) June 13th, Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona IMB-CNM, Barcelona (Spain)
1 Nicolo Cartiglia, INFN, Torino - RD50 - Santander, 2015 Timing performance of LGAD-UFSD 1.New results from the last CNM LGAD runs 2.A proposal for LGAD.
Experience with 50um thick epi LGAD
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
Status of CNM RD50 LGAD Project27th RD50 Workshop, CERN 2-4 Dec Centro Nacional del MicroelectrónicaInstituto de Microelectrónica de Barcelona Status.
CHAPTER 4: P-N JUNCTION Part I.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
How to design a good sensor? General sensor desing rules Avoid high electric fields Provide good interstrip isolation (high Rint) Avoid signal coupling.
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
Giulio Pellegrini 12th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders, Ljubljana, Slovenia, 2-4 June 2008 Report.
3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x1016 neq/cm2 Zheng Li1 and Tanja Palviainen2 1Brookhaven National.
Power MOSFET Pranjal Barman.
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Irradiation and annealing study of 3D p-type strip detectors
Report from CNM activities
Bipolar Processes Description
Optional Reading: Pierret 4; Hu 3
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Fabrication of 3D detectors with columnar electrodes of the same doping type Sabina Ronchina, Maurizio Boscardina, Claudio Piemontea, Alberto Pozzaa, Nicola.
Presentation transcript:

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Pablo Fernández-Martínez, M. Baselga, V. Greco, D. Flores, S. Hidalgo, G. Pellegrini IMB-CNM, Barcelona (Spain) Design and Fabrication of an Optimal Peripheral Region for the LGAD

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Talk Outline  Critical aspects of the LGAD design  Junction edge termination  Protection of the periphery  Design of the peripheral region in the new production run  Conclusions

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Critical aspects of the LGAD design Electric 400 V  Two regions  different junctions: Central area  uniform electric field, high enough to activate mechanism of impact ionization (multiplication) Termination N+N+ P π  High electric field confined in the central region  3rd Region Periphery  Reduction of the leakage currents

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Edge Termination: Why is needed?  The N + shallow contact and the P-multiplication layers have to be locally created with a lithography mask The electric field at the curvature of the N + /P junction is much higher than that of the plane junction (where Gain is needed) Avalanche at the N + /P curvature at a very low reverse voltage (premature breakdown) Shallow N + and P-multiplication layers self aligned High electric field peak at the curvature

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Design of the Edge Termination: Critical Electric Field P-Multiplication layer P-Substrate Extrapolated values B. Jayant Baliga (2008): Fundamentals of Power Semiconductor Devices

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Junction Edge Termination: Analyzed Designs 3 Designs have been analyzed  The optimization of the edge termination is ruled by the electric field at the multiplication layer (not by the maximum voltage capability, as in power devices).  Goal: V BD_1D < V BD_Edge

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Junction Edge Termination: Floating Guard Ring  The N+ shallow diffusion is used to implement a floating guard ring. The lateral electric field distribution is smoothed leading to two peaks (main junction and floating guard ring) The electric field peak and the risk of avalanche breakdown at the curvature of the main junction is reduced. Optimization of the guard ring location is needed. The lower Ec value at the ring junction can lead the termination to breakdown

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Junction Edge Termination: N + Extension  The N + is used to extend the N+ beyond the edge of the multiplication layer Phosphorous diffuses more in the very lowly doped substrate (higher curvature radius and voltage capability). The electric field rapidly increases at the plain junction (multiplication). The lower Ec value at the overlap junction can lead the termination to breakdown

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona N + electrode N Diffusion (JTE) Junction Edge Termination: Junction Termination Extension  Lowly doped N-type Deep diffusion (JTE) around the curvature of the main junction Additional (specific) photolithographic step The addition of a Field Plate moderates the electric field at the JTE curvature Field Plate P type multiplication layer P type ( π ) substrate Resistivity ~ 10 KΩ·cm P + electrode

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona The electric field peak is reduced at the JTE curvature The highest electric field value is located at the main junction (1D)  multiplication control Ec value at the JTE junction is not as low, so the breakdown can be localized at the main junction Junction Edge Termination: Junction Termination Extension

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Design of the Device Periphery  Peripheral region should ensure the voltage capability as well as limiting the leakage current. After the full (vertical) depletion is reached, a fast lateral depletion of the lowly doped substrate takes place. C-Stop A C-Stop located too close to the edge termination can degrade the voltage capability  A deep P+ diffusion (C-Stop) is needed in the die periphery to avoid the depletion region reaching the unprotected edge

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Optimization of the periphery: Positive oxide charges Surface leakage currents  Field oxides grown in wet conditions (H 2 + O 2 ) typically have a positive charge density in the range of 5e10 cm -2 Surface inversion of the substrate and modification of the depletion dynamics.

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Optimization of the periphery: Strategies  Positive oxide charges (radiation induced or technologically originated) induce surface inversion of the substrate  Current path towards the collector electrode. Boron blanket implant Same implant  P-Spray: Counteracts the inversion  P-Stop: cut the current path off

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Optimization of the periphery: Guard Ring Good isolation should be ensured  Guard ring confines the detection area  Biased guard Ring around the detection region. The ring is independently biased to extract the surface component of the current Voltage capability is preserved (same curvature as JTE)

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Low Current Devices High Current Devices High Voltage Capability (Breakdown > 1100 V) in all wafers  Leakage current varies from some 10 nA to more 100 µA in devices within the same wafer Implementation: Problems at the peripheral region V BD > 1100 V Guard Ring is short-circuited with N + electrode (inefficient P-Spray) Run 6474 LGAD Wafer (W8 – High Boron Implant)

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona  Capacitance humps are related with the depletion of the periphery Run 6474 Implementation: Problems at the peripheral region Moderate reduction Run 7062  Leakage current is mostly generated at the periphery

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona New Fabrication Run Top Distribution Back Metallization

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona New Fabrication Run o 9 LGAD Pad Detectors 3 (8 x 8 mm multiplication area) 6 (3 x 3 mm multiplication area) o 9 PiN Detectors 3 (8 x 8 mm active area) 6 (3 x 3 mm active area) o 4 LGAD pStrips Detectors o 2 PiN pStrips Detectors o 1 Pixelated LGAD Detector (6 x 6 pixels) o 1 Pixelated PiN Detector (6 x 6 pixels) o 3 LGAD for Timing Applications 200 um to chip edge 250 um to chip edge 800 um to chip edge o 1 FEI4 compatible pStrip Detector o 1 Specific Test Structure (SPR,SIMS,XPS) o 113 Structures 47 (10 x 10 mm, total area) 66 (5 x 5 mm, total area)

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona New Fabrication Run: LGAD pad Detectors LGAD 1,4,7 LGAD 2,5,8 LGAD 3,6,9 o LGAD Pad Detectors Multiplication Area  8 x 8 mm (Type 1, 2, 3)  3 x 3 mm  Termination: * P-Stop + N-Guard Ring (Type 3, 6, 9) * P-Stop + N-Guard Ring with JTE (Type 2, 5, 8) * JTE + P-Stop + N-Guard Ring with JTE (Type 1, 4, 7) * Field Plate 10 µm, 0 µm (Type 7, 8, 9) Field Plate

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona New Fabrication Run: LGAD strip Detectors o 4 LGAD pStrips Detectors o 2 PiN pStrips Detectors o Key Legend AA-BB-CC-DD-EE AA, Channels Number BB, Pixel Size CC, Multiplication Width DD, P-Stop Width EE, P-Stop Position

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Conclusions  Optimization of the LGAD peripheral region is crucial for the detector performance Edge termination techniques confine the high electric field into the multiplication area and give voltage capability to the detector Structures within the peripheral region avoid high leakage currents and degradation  JTE termination technique has proved good performance  P-Spray technique has shown poor effectiveness  New production run at the IMB-CNM include pad and segmented (strip and pixel) designs with an optimized peripheral region based on the P-Stop technique.

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Thank you Questions?

P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona Optimization of the Multiplication layer Small variations in the Boron implant dose ( ~ 2 × at/cm 2 ) lead to large changes in Gain and Breakdown values Higher Boron implant Dose: Higher Gain Lower Breakdown  P-type multiplication layer determines both Gain and Breakdown  Effective charge and doping value at the junction determine the Gain