Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.

Slides:



Advertisements
Similar presentations
Pressure and Kinetic Energy
Advertisements

The Amazing Spectral Line Begin. Table of Contents A light review Introduction to spectral lines What spectral lines can tell us.
Stimulated emissionSpontaneous emission Light Amplification by Stimulated Emission of Radiation.
HCN, HNC, CN et al. in dense depleted cores Malcolm Walmsley (Arcetri and Dublin) With thanks to Marco Padovani and Pierre Hily-Blant.
Protostars, nebulas and Brown dwarfs
AS 4002 Star Formation & Plasma Astrophysics MOLECULAR CLOUDS Giant molecular clouds – CO emission –several tens of pc across –mass range 10 5 to 3x10.
METO 621 Lesson 6. Absorption by gaseous species Particles in the atmosphere are absorbers of radiation. Absorption is inherently a quantum process. A.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
Physics 681: Solar Physics and Instrumentation – Lecture 10 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
The Interstellar Medium Physical Astronomy Professor Lee Carkner Lecture 12.
ISM & Star Formation. The Interstellar Medium HI - atomic hydrogen - 21cm T ~ 0.07K.
Hydrostatic Equilibrium and the Sun’s Core:. Clicker Question: What does does ionized Helium, He II, contain? A: He nucleus only B: He nucleus and one.
Jonathan Slavin Harvard-Smithsonian CfA
Spectral Regions and Transitions
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY Raquel R. Monje Darek C. Lis, Thomas Phillips, Paul F. Goldsmith Martin.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
1 射电天文基础 姜碧沩北京师范大学天文系 2009/08/24-28 日,贵州大学. 2009/08/24-28 日射电天文暑期学校 2 Spectral Line Fundamentals The Einstein Coefficients Radiative Transfer with Einstein.
The formation of stars and planets
Pat Arnott, ATMS 749, UNR, 2008 Chapter 9: Absorption by Atmospheric Gases Visible and UV Absorption: due to electronic transitions. Monatomic - polyatomic.
1 Lecture 5 By Tom Wilson. 2 Dust clouds in Taurus Regions shown in gray are those where very few stars are seen (Becvar atlas)
Sternentstehung - Star Formation Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview 1.5 Public Holiday: Tag der Arbeit.
Space Between the Stars: Properties of the Interstellar Medium Steven R. Spangler University of Iowa.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
SCATTERING OF RADIATION Scattering depends completely on properties of incident radiation field, e.g intensity, frequency distribution (thermal emission.
Collision rate =  coll -1 = n e  coll v ~ (k B T/m H ) 1/2 n e  coll ~ 9 x n e T 1/2 s -1 collisions of electron against atoms Spontaneous emission.
Stellar structure equations
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
Lecture 4 By Tom Wilson. Review page 1 Interferometers on next page Rayleigh-Jeans: True if h
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Mellinger Lesson 7 LVG model & X CO Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
ISM Lecture 7 H I Regions I: Observational probes.
Mellinger Lesson 10 SNR & sequential star formation Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic.
Mellinger Lesson 8 Star Formation Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
ROTATIONAL SPECTROSCOPY
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-32.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
The structure of our Milky Way galaxy: a container of gas and stars arranged in various components with various properties.. Gaseous halo? ~ 6 x
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Determination of physical properties from molecular lines Kate Brooks Australia Telescope National Facility Mopra Induction Weekend May 2005.
Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio.
HIA Summer SchoolMolecular Line ObservationsPage 1 Molecular Line Observations or “What are molecules good for anyways?” René Plume Univ. of Calgary Department.
Chapter 11 The Interstellar Medium
The Gaseous Universe Section 3.4 of the text. Phases of Matter There are four: Solid - rare, in astronomy Liquid - rarest in astronomy: examples include.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Mellinger Lesson 2 Radiative transfer & emission from single electron Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University 鹿児島大学/愛媛大学 Galactic.
GLAST LAT Collaboration GLAST Lunch Talk 07/06/06 Johann Cohen-Tanugi, SLAC-Stanford University 1 Measuring Molecular masses in the Milky Way Johann Cohen-Tanugi.
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Schrödinger Equation – Model Systems: We have carefully considered the development of the Schrödinger equation for important model systems – the one, two.
Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Lecture 8: Stellar Atmosphere 4. Stellar structure equations.
Chapter 8. Molecular Motion and Spectroscopy
Outflows and Jets: Theory and Observations Winter term 2006/2007 Henrik Beuther & Christian Fendt Introduction & Overview (H.B. & C.F.) Definitions,
Of Marching Bands and Interstellar Clouds Lorne Avery Nov. 6, 2002 Some slides courtesy Wayne Holland, UKATC.
MOLECULAR SPECTROSCOPY
By: Mike Malatesta Introduction to Open Clusters.
The Interstellar Medium (ISM)
Chapter 6 Applications of
Lesson5 Einstein coefficient & HI line
Chapter 13 – Behavior of Spectral Lines
Only three lines observed R(0) R(1) P(1)
Mitsunori ARAKI, Hiromichi WAKO, Kei NIWAYAMA and Koichi TSUKIYAMA○
Star Formation and Interstellar Chemistry
Chapter 9: Absorption by Atmospheric Gases
21cm Hydrogen spectrum anomaly and dark matter Qiaoli Yang Jian University Phys.Rev.Lett. 121 (2018) Nick Houston, Chuang Li, Tianjun Li, Qiaoli.
Thermalization of interstellar CO
Presentation transcript:

Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy

Mellinger Physical state of Int.-stellar gas categorytemperaturedensitymajor objects molecular gas20K>100 cm -3 molecular clouds atomic gas100K1 cm -3 WNM, CNM ionized gas K100 cm -3 HII regions ionized gas10 6 K<0.01 cm -3 coronal gas expansion Gravitational collapse Phase change Pressure equilibrium Radiative cooling (very slow) SNR heating

Mellinger Molecular clouds ▶ It is a “interstellar molecular gas cloud”. ■ Condensation of IS gas mainly composed by H 2 ■ The most dense part of the ISM ▶ Non-equilibrium with surrounding gas ■ Self gravity works efficiently. ■ Self-gravity > gas pressure gives contraction(?)

Mellinger Prove of molecular clouds(1) ▶ Hydrogen molecules H 2 ■ Symmetric 2 atom molecule is  =0 ■ No electric-dipole emission! ■ No radio emission for rotational transition ▶ Q:What’s the next? A : CO ■ Abundance is not well fixed. ■ CO/H 2 ~10 -4

Mellinger Prove of molecular clouds(2) ▶ Problem on CO ■ Saturate with even a moderate column density ▶ Isotope molecules of 12 C 16 O ■ 13 CO, C 18 O ▶ Other molecules ■ CS, HCO +, HCN, etc.

Mellinger Mol. lines : rotational transition ▶ diatomic molecule ▶ Electronegativity difference ■ C=2.55, O=3.44 Pauling electronegativity ▶ Mass difference ■ C=12, O=16 ▶ Cnt of electr. distr. ≠ Mass center ■ Electric dipole moment ■ Rot. gives charge vib.→radio emission C O axis : mass center

Mellinger Rot. trans. of diatomic molecule(1) ▶ Model: rotation of an electric dipole ■ Rotation quantum number J ■ Energy level E J =hBJ(J+1) ■ Allowed transition is only  J=±1 ■ Line frequency n J+1,J =E J+1 -E J =2B(J+1) A J+1,J =(64  4 n 3 )/(3hc 3 )|  J+1,J | 2 =(64  4 n 3 )/(3hc 3 ) (J+1)/(2J+3)  2

Mellinger Rot. trans. of diatomic molecule(2) ▶ Absorption coefficent   =(8  3 )/(3hc) (J+1)/(2J+1)  2 n J {1-exp[(-h )/(kT ex )]}  ( ) ▶ Assume LTE, total number of molecules are n J =n g J exp{-E J /(kT ex )}/ Q ▶ Dist. funct.: Q=  (2J+1) exp{-E J /(kT ex )} =∫(2J+1)exp{-hBJ(J+1)/kT ex } dJ = kT ex /(hB)

Mellinger Rot. trans. of diatomic molecule(3) ▶ Absorption coefficient   =(8  3 B )/(3kT ex c) (J+1)  2 n exp[(-hBJ(J+1)/(kT ex )] {1-exp[(-h )/(kT ex )]}  ( ) ▶ If Tex=const on the line-of-sight,   =N(4  3 2  2 )/(3kT ex c) exp[(-h  J)/(2kT ex )] {1-exp[(-h )/(kT ex )]}  ( ) where we used h =2hB(J+1).

Mellinger Rot. trans. of diatomic molecule(4) ▶ Use d  =(  /c) d v (Doppler effect)   =N(4  3 2  2 )/(3kT ex  v ) exp[(-h  J)/(2kT ex )] {1-exp[(-h )/(kT ex )]} ■ solve for N, N  =   (3kT ex  v ) /(4  3 2  2 ) exp[(h  J)/(2kT ex )] {1-exp[(-h )/(kT ex )]} -1

Mellinger Rot. trans. of diatomic molecule(5) ▶ Complex calc due to nonlinearity, Invalid RJ appr. h /k =5.5 [K] ~ T ex =20 [K](for CO) Use R-J equiv. temp. J(T)=h /k{exp(h /kT)-1} -1 We cannot neglect CMB ▶ Line intensity  T =[J(T ex )-J(T BG )][1-exp(-  )] ▶ From this we got , which gives N. N 13CO(1-0) [cm -2 ] =2.5x10 14  13CO T ex  v [K km s -1 ] {1-exp(- 5.29/T ex [K]} -1 for 13 CO(1-0) line

Mellinger Molecular line in a mol. cloud ▶ Collisional excitation ■ Equilibrium between collision and line emission ▶ Two level mode dn 1 =n 2 A 21 -n 1 B 12 I+n 2 B 21 I-n 1 C 12 +n 2 C 21 n=n 1 +n 2 total number is const. ▶ Solve under steady state with dn 1 =0 n2n2 n1n1 C 12 C 21 B 21 B 12 A 21

Mellinger Consider the extreme case ▶ When collision term neglect (C 12 = C 21 =0) I=(A 21 /B 21 )/[(n 1 /n 2 ) (B 12 /B 21 )-1] ■ The same as derivation of Einstein coefficients. ▶ When radi. part neglect A 12 = B 12 = B 21 =0 ) n 2 /n 1 =C 12 /C 21 ■ Due to frequent collision, thermal equiv. under T k ■ T k : kinetic temperature n 2 /n 1 =C 12 /C 21 =( g 2 / g 1 )exp[-(h )/(kT k )] ■ With Einstein coefficients it gives…

Mellinger Reduction of coefficients ▶ Derived equation n 2 /n 1 =( g 2 / g 1 ){(c 2 /(2h  3 )I A 21 +C 21 exp[-(h )/(kT k )]} /{A 21 [1+ c 2 /(2h  3 ) I]+C 21 } ■ Show I with T r using Planck function formally ■ Show n 2 /n 1 with T ex using Boltzmann distr. ▶ They give… exp[-(h )/(kT ex )]=[A 21 /{exp(-h /kT r )-1}+C 21 exp(-h /kT k ) /{A 21 exp(h /kT r )/[exp(h /kT r )-1]+C 21 }

Mellinger Consider the extreme case Equation given on the previous page exp[-(h )/(kT ex )]=[A 21 /{exp(-h /kT r )-1}+C 21 exp(-h /kT k ) /{A 21 exp(h /kT r )/[exp(h /kT r )-1]+C 21 } ■ When radiation dominant (A 21 ≫ C 21 ) T ex →T r ■ When collision dominant (A 21 ≪ C 21 ) T ex →T k ■ Weak radiation approximation (I=0) n 2 /n 1 =[n 2 /n 1 ] Bol (A 21 /C 21 +1) -1 [n 2 /n 1 ] Bol : Boltzmann distr. with T k

Mellinger Critical density(1) ▶ Classical collision model: C 21 C 21 =n(H 2 )  ▶ no line with small n 2 /n 1 n 2 /n 1 =[n 2 /n 1 ] Bol (A 21 /C 21 +1) -1 ■ Critical value is given by A 21 <C 21 ■ n(H 2 )>A 21 /(  )=n(H 2 ) crit : critical density ▶ Easy misunderstanding ■ “strong line with large A coefficient” is false.

Mellinger Critical density(2) ▶ In the case of CO(J=1-0) ■ A 10 =7.203×10 -8 s -1,  ~ cm 2 ■ If T k ~20K, ~0.5 km s -1 ■ They gives n(H 2 ) crit, CO(1-0) ~10 3 cm -3 :crit. density ▶ In the case of CO(J=4-3) ■ With A 43 =( 43 / 10 ) 3 A 10 =6.4×10 -6 s -1, we get ■ n(H 2 ) crit, CO(4-3) ~10 5 cm -3

Mellinger Critical density(3) ▶ Appropriate line to address typical density ■ high density tracer CS, HCN, HCO + CO(4-3), CO(3-2) NH 3 ▶ Molecular gas without any line emission ■ Very less dense gas may exist. ■ Candidates of baryonic dark matter=dark gas

Mellinger Multi-line observations(1) ▶ LTE approximation ■ T ex is constant between any two levels ■ Line intensities differ due to  T B =T ex (1-e -  ) ■ Compare lines with  ≫ 1 and  ≪ 1 T B,thick =T ex, T B,thin =T ex , ▶ Optical depth from intensity→column density ▶ Optically thick line→excitation temperature

Mellinger Multi-line observations(2) ▶ Multi-levels (allow  j=±1: diatomic mol.) dn j =n j+1 A j+1,j -n j B j, j+1 I j+1,j +n j+1 B j+1,j I j+1,j -n j C j,j+1 +n j+1 C j+1,j n=  n j total number is const. ■ Solve it under steady state dn j =0 ▶ Change of I j+1,j :simliar to the 2 level model   = (h  )/(4  )  ( ) n j A j+1,j   = (h  )/(4  )  ( ) (n j B j,j+1 -n j+1 B j+1,j ) ▶ Change of intensity dI =(   –   I )dx ■ Depend on the large scale structure of the cloud