Molecular Gas in (very) Distant Galaxies Fabian Walter (MPIA) F. Bertoldi, C. Carilli, P. Cox, K. Menten, A. Weiss
History of the Universe Epoch of Reionization (EoR) galaxies today Cosmic ‘Dark Ages’ no stars/quasars mass buildup recombination (z~1000)
high redshift zoo: high redshift zoo: - Lyman Break galaxies - Lyman galaxies - Submm (‘SCUBA’) galaxies - EROs - DRG - BzK galaxies - faint blue galaxies - Radio galaxies - QSO host galaxies mm/submm observations: - detection/imaging of dust emission -> L FIR - detection/imaging of molecular lines -> molecular gas (‘SF reservoir’) -> dynamical masses High Redshift Galaxies science drivers: science drivers: - mass assembly / galaxy formation - unified picture of galaxy evolution - history of SFRD (‘Madau plot’) / stellar mass assembly - evolution(?) of M BH - relation -> major science drivers for all (sub)mm instruments
L _FIR = 4x10 12 x S 250 (mJy) L _sun for z=0.5 to 8 SFR = 1400 x S 250 (mJy)M _sun /yr (very high) M _dust = 1.4x10 8 x S 250 (mJy) M _sun Dust Imaging: The Magic of (Sub-)mm ~1mm obs: JCMT - SCUBA Zeus -> poster Hailey-Dunsheath CSO - SHARK-II Bolocam -> talk Glenn -> poster Aguirre 30m - MAMBO SMA PdBI ASTE APEX - LABOCA -> talk Menten
Submm (‘SCUBA’) Sources Source identification critical (usually through RC, Chapman ea. 03/04) Downes et al Hughes et al SMA, Iono ea. 05, Peck ea ” SCUBA -> poster
Molecular Gas so far 2 major populations: - submm galaxies - submm galaxies - QSO host galaxies - QSO host galaxies [but also radio gal, BzK,...] [but also radio gal, BzK,...] problem: accurate z not known - faint in optical (submm gal.) - faint in optical (submm gal.) - complex emission lines (QSO hosts) - complex emission lines (QSO hosts) first: detection of dust molecular gas: fuel for SF cold H 2 invisible -> use CO as tracer -> molecular gas mass, dynamical mass [CO(n-(n-1))] = (115GHz x n) / (1+z) z=6 -> CO(1-0): 3mm -> 2cm ! z=6 -> CO(1-0): 3mm -> 2cm ! M 51 Sakamoto ea. 04 Matsushita ea. 04 M51 - CO(2-1) SMA
CO simulations (from M. Yun) The Need for Bandwidth fractional BW: VLA: / 40GHz=0.001 [50MHz ~ 300 km s -1 ] PdBI: / 100GHz= > (but upgrade ongoing) GBT: / 22 GHz = 0.08 SMA: - 2 / 230GHz = 0.01 CARMA: - 4 / 100 GHz= 0.04 EVLA: - 8 / 40GHz=0.2 ALMA - 8 / 100GHz= / 350GHz=0.02 future PdBI VLA EVLA/ALMA
Object TypeRedshiftCO J u Telescope Reference (... et al.) IRAS QSO* m 30m Brown 1991, Solomon 1992 SMM J SMM PdB Neri W002 QSO OVRO PdB Scoville 1997, Alloin 2000 SMM J SMM PdB Neri 2003 Cloverleaf QSO* PdB Barvainis 1994 SMM J SMM* OVRO PdB Frayer 1999, Downes 2003 PSS J QSO PdB Beelen 2004 MG QSO* PdB Barvainis 1998 MS1512-cB58 LBG*2.723PdBBaker 2003 Q B QSO* PdB Guilloteau 1999 SMM J SMM* OVRO PdB Frayer 1998, Genzel 2003 B3 J RG PdB de Breuck 2003 MG QSO* PdB Barvainis 2002 SMM J SMM PdB Neri 2003 TNJ RG PdB de Breuck C RG PdB Papadopoulos C60.07 RG * PdB Papadopoulos 2000 APM QSO* PdB Downes 1999 PSS J QSO* PdB VLA Eb Cox 2002, Carilli 2002 BRI QSO* PdB Guilloteau 1999 BRI QSO PdB VLAGuilloteau 1997, Carilli 2002 BRI QSO PdB VLA Eb Omont 96a, Ohta 96, Carilli 02 TN J RG ATCAKlamer 05 SDSS J QSO VLA PdBWalter 03/04, Bertoldi 2003 (*) definitely lensed, SMM=submm galaxy, RG=Radio Galaxy 13 QSO + 5 SMM + 4 RG + 1 LBG = 23 Molecular Gas at High z
PdBI survey of CO(1-0) of SMM galaxies Greve ea Neri ea Genzel ea M H2 ~ 3x10 10 M sun large FWHM: mergers? -> double peak: rotation? M dyn ~ M sun SMM J SMM J SMM J SMM J SMM J SMM J SMM J SMM J SMM J SMM J ERO J SMM J Submm Galaxies
Plateau de Bure survey: most sources unresolved at >0.6” (Tacconi et al. 2005)
TN J radio z=5.2 ATCA: Klamer ea J1409: Hainline, Scoville ea OVRO w/ COBRA (4GHz!) correlator -> CARMA...more Detections Sheth ea. 2004, Kneib ea. 2004
...but how about the physical conditions of gas?
CO Line SEDs: gas excitation turnover: measure of the CO excitation shape is temperature/density dependent shape: search for extended CO f(T) f( ) LVG input: n(H 2 ), T kin, [CO]/[H 2 ]/dv/dr (fixed to pc (km/s) -1 ) Multiple components Weiss K 40 K 140 K
Multiple CO Lines (Weiss, Walter, Downes, Henkel) IRAM 30m CO SED survey (1, 2, 3mm bands)
CO(1-0) Transition: ‘cm’ Telescopes z=4.7z=3.9 Walter, Riechers, Knudsen ea. Bertoldi, Menten, Henkel ea. z=4.7 GBT Effelsberg
single gas component QSO turnover: >6-5 SMM turnover: 5-4 compact (<1.5kpc) no indication for extended comp. Cloverleaf F10214MG 0751 PSS 1409PSS 2322APM 0827 SMM SMM CO Line SEDs (I) T kin ~80 K, n(H 2 )~ cm -3 T kin ~30–70 K, n(H 2 ) ~ cm -3 (Weiss, Walter, Downes, Henkel)
Local starbursts: T kin ~ 50 K, n(H 2 ) ~ cm -3 CO Line SEDs (II) M51 Antennae Arp220 Mrk 231 r CO ~ 4kpc r CO ~ 1.5kpc r CO ~ 500 pc r CO ~200 pc merger of two spirals (r~ 4 kpc) -> if central gas concentration as in ULIRGs (200 pc), -> average molecular density rises by >2 orders of magnitudes
2 nd extra galactic CI ratio L’ CI(21) / L’ CI(10) = 0.5, T ex = 30 K CI ( 3 P P 1 ) PdBI CI ( 3 P P 0 ) 30m CI ( 3 P P 0 ) 30m CI ( 3 P P 0 ) 30m F10214CloverleafSMM Neutral Carbon (CI) BR1202: CII line Iono et al (SMA) PSS2322: CI ( 1-0 ) IRAM PdBI Pety ea Weiss, Downes, Walter, Henkel. 03, 04 -> poster
High Density Tracer: HCN Carilli, Vanden Bout, Solomon, Walter ea Gao & Solomon 2004 L(HCN) L(FIR) HCN(5-4) in APM08279: poster Wagg J F GBT(!) Solomon ea 2004
1” ~ 7.5kpc [8.5 z=2, 5.8 z=6] -> need ~0.15” resolution to get 1 kpc resolution z=6.5 CO(7-6): 100 GHz (band 3): 4 km baselines z=2.5 CO(3-2): 100 GHz (band 3): 4 km baselines CO(6-5): 230 GHz (band 6): 1.8 km baselines -> high-res (0.15”) CO studies at high z need long baselines Resolution is Key...so far - galaxy-integrated properties currently only doable with VLA! ultimate goal: resolve CO emission spatially/kinematically - - compare to optical/NIR imaging - - dynamical masses!
BRI (z=4.407) - CO(2-1) observed at 7mm (Q band) VLA imaging at 0.2” resolution VLA B array - 0.2” res. channel width: ~15 MHz (100 kms -1 ) Riechers, Walter, Carilli et al. 10 kpc
...out to the Epoch of Reionization...
J The Most Distant QSO J at z=6.4 end of EoR) Gunn Peterson trough Fan et al. 2003, White et al z=6.42; age~870 Myr one of the first luminous sources M BH ~ 1-5 x 10 9 M sun (Willot et al. 2003) M dust ~ 10 8 M sun (Bertoldi et al. 2003)
Molecular End of EoR Walter et al Bertoldi et al CO(3-2) GHz continuum molecular gas mass: M H2 = 2 x M sun M H2 = 2 x M sun mass in C O: ~3x10 7 M sun mass in C and O: ~3x10 7 M sun -> Pop III stars? -> Pop III stars? VLA PdBI z=6.419 T kin =60K, n H2 = cm -3
VLA B + C array; res.: 0.3” (~2 kpc) Resolved z=6.4 assuming disk geometry: b maj =3.6 kpc, v rot =280 kms -1 b maj =3.6 kpc, v rot =280 kms -1 M dyn ~ 6 x M sun M dyn ~ 6 x M sun M BH = M sun -> M bulge = few M sun ? M BH - breakdown? [Willot ea 2005: no companions -> low M DM, but M- =f(z) ?] channel maps (width: 60 km s -1 ): Walter et al. 2004
CI CI (809 GHz) - observed at 109 GHz with PdBI : Bertoldi et al L(HCN) HCN(4-3) VLA Q-band (nondetection) Carilli, Vanden Bout, Solomon, Walter ea Gao & Solomon 2004 L(HCN) L(FIR) Other Tracers in CII: (157 microns) - nondetection - JCMT (Bolatto ea. 2004) - detection (30m) (Maiolino et al. 2005) -> poster
Summary from ‘blobology’ -> real physics molecular gas all the way back to the EoR! CO SEDs: submm QSOs single T, no extended comp. high densities (not nec. high T) CI, HCN detectable at high z resolve 1 kpc res. (~0.2”) studies in very early universe (< 1Gyr): - metal enrichment, M dyn - M- (z) relation so far: tip of the iceberg
The End