H.Nagahiro, S.Hirenzaki, Phys.Rev.Lett.94 (2005)232503 H.Nagahiro, M.Takizawa, S.Hirenzaki, Phys.Rev.C74 (2006)045203 D. Jido, H. Nagahiro, S. Hirenzaki,

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
Reaction dynamics of light nuclei around the Coulomb barrier Alessia Di Pietro INFN-Laboratori Nazionali del Sud ARIS 2014Alessia Di Pietro,INFN-LNS.
1.Introduction 2.Exotic properties of K nuclei 3.To go forward (Future plan) 4.Summary Dense K nuclei - To go forward - KEK Nuclear KEK, ’06.Aug.3.
Deeply Bound Pionic States in Sn at RIBF N. Ikeno (Nara Women’s Univ. M1) J. Yamagata-Sekihara (IFIC, Valencia Univ.) H. Nagahiro (Nara Women’s Univ.)
May/27/05 Exotic Hadron WS 1 Hypothetical new scaler particle X for  + and its search by the (K +, X + ) reaction T. Kishimoto Osaka University.
Kˉ- 4 He, Kˉ- 3 He interactions at low energies Vera Grishina (INR RAS, Moscow, Russia) University of Bonn, Germany August 31 – September 5, 2009.
Hypernuclear Production in proton- and pion- nucleus Collisions: A Fully Relativistic Description Radhey Shyam Saha Institute of Nuclear Physics, Kolkata,
Proton, Pion and Kaon Transparency Measurements Overview of existing (& new kaon!) transparency data Questions: A-dependent analysis – any improvements.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
中間子ー原子核束縛系の物理 - A brief summary of current interests - 奈良女子大学比連崎 悟.
J/ψ - bound nuclei and J/ψ - nucleon interaction Akira Yokota Tokyo Institute of Technology Collaborating with Emiko Hiyama a and Makoto Oka b RIKEN Nishina.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
The  process in nuclei and the restoration of chiral symmetry 1.Campaign of measurements of the  process in N and A 2.The CHAOS spectrometer.
Pornrad Srisawad Department of Physics, Naresuan University, Thailand Yu-Ming Zheng China Institute of Atomic Energy, Beijing China Azimuthal distributions.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Measurement of the η’N scattering length at LEPS2 2014/2/20 Keigo Mizutani Kyoto Univ.
On nuclear states of ƞ ( and K - ) S. Wycech NCBJ Warsaw 1) Introduction 2) Non-mesic decay modes.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Extended optical model analyses of elastic scattering and fusion cross sections for 6, 7 Li Pb systems at near-Coulomb-barrier energies by using.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Bled workshop  -core potentials for light nuclei derived from the quark-model baryon-baryon interaction Y. Fujiwara ( Kyoto) M. Kohno ( Kyushu.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Recent results and future prospects of LEPS and LEPS2 M. Miyabe ELPH, Tohoku University ELPH workshop C013 "Meson Production and Meson-Baryon Interaction"
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Comparison of quasi-elastic cross sections using spectral functions with (e,e') data from 0.5 GeV to 1.5 GeV Hiroki Nakamura (Waseda U). Makoto Sakuda.
Exotic Atoms and Exotic 05,RIKEN 16 Feb. ’05 S. Hirenzaki (Nara Women’s Univ.)
THE K + -NUCLEUS MICROSCOPIC OPTICAL POTENTIAL AND CALCULATIONS OF THE CORRESPONDING DIFFERENTIAL ELASTIC AND TOTAL REACTION CROSS SECTIONS V.K.LUKYANOV,
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
DWIA calculation of 3 He (In-flight K -, n) reaction RIKEN, Advanced Meson Science Lab. Takahisa Koike KEK 研究会「現代の原子核物理-多様化し進化する原子核の描像」、 2006 年 8 月 3 日.
Search for a nuclear kaon bound state K - pp at the J-PARC K1.8 beam line. Dep. of physics, Kyoto University / JAEA Y. Ichikawa for E27 Collaboration Korea-Japan.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Double-Pionic Fusion in Nucleon Collisions on Few Body Systems - The ABC Effect and its Possible Origin Wasa-at-Cosy Celsius Wasa.
10 June 2015 Satoru Hirenzaki (Nara Womens University, Japan) Meson Properties at Finite Density from Meson Nucleus Systems * eta by d+d * Comments on.
The Analysis of Elastic pp Scattering in the Forward Direction for PAX Experiment Energy Range. S.B. Nurushev, M.F. Runtso, Moscow Engineering Physics.
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
Kaon Absorption from Kaonic Atoms and
The study of pentaquark states in the unitary chiral approach
Formation of Meson-Nucleus Bound Systems by (g,p) reactions
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
η-mesic nucleus by d + d reaction ー how to deduce η-Nucleus int. ー
Hadron modifications seen with electromagnetic probes
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Center for Nuclear Study, University of Tokyo
Photoproduction of K* for the study of L(1405)
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Shota Ohnishi (Tokyo Inst. Tech. / RIKEN)
Deeply Bound Mesonic States -Case of Kaon-
In-medium properties of the omega meson from a measurement of
On a Search for -Mesic Nuclei at MAMI-C
Missing mass spectroscopy
how is the mass of the nucleon generated?
Breakup of weakly bound nuclei and its influence on fusion
Signature of L(1405) in K-dpSn reaction
K+ - Scattering from Nuclear Targets
Presentation transcript:

H.Nagahiro, S.Hirenzaki, Phys.Rev.Lett.94 (2005) H.Nagahiro, M.Takizawa, S.Hirenzaki, Phys.Rev.C74 (2006) D. Jido, H. Nagahiro, S. Hirenzaki, D. Jido, H. Nagahiro, S. Hirenzaki, Phys.Rev.C 85, (R) (2012) H. Nagahiro, S. Hirenzaki, E. Oset, A. Ramos, H. Nagahiro, S. Hirenzaki, E. Oset, A. Ramos, Phys. Lett. B 709 (2012) (Exp.) K. Itahashi et al., submitted to Prog. Theor. Phys.; (Exp.) K. Itahashi et al., submitted to Prog. Theor. Phys.; Letter of Intent for GSI-SIS (2011) Satoru Hirenzaki, Hideko Nagahiro, Daisuke Jido Nara Women’s University, YITP, Kyoto University Nara Women’s University, YITP, Kyoto University Formation of η’(958) mesic nuclei

ETA07 in Peniscola, 11 May 2007 『 Meson Mass Reduction 』, What do you mean ?? 1, Mass reduction will be equivalent to attractive V in Eq. of Motion..

ETA07 in Peniscola, 11 May 2007 『 Meson Mass Reduction 』, What do you mean ?? 1, Mass reduction will be equivalent to attractive V in Eq. of Motion.. 2, But “ Attractive  Mass reduction ’’ is wrong. Ex.) Coulomb case. Origin of the attraction is important. Origin of the attraction is important. Invariant mass data ONLY at small kinetic energy 

ETA07 in Peniscola, 11 May 2007 『 Meson Mass Reduction 』, What do you mean ?? 1, Mass reduction will be equivalent to attractive V in Eq. of Motion.. 2, But “ Attractive  Mass reduction ’’ is wrong. Ex.) Coulomb case. Origin of the attraction is important. Origin of the attraction is important. Invariant mass data ONLY at small kinetic energy 3, Thus, “exclusive” and/or “systematic” are important ! ==> Bound state spectroscopies ==> Bound state spectroscopies (Quantum number selection rules, No vacuum background) (Quantum number selection rules, No vacuum background) 

ETA07 in Peniscola, 11 May 2007 『 η(958) Bound State 』, What do you like ?? 4, For Bound State observation as peaks, however, ReV>ImV ReV>ImV is important. 3, Thus, “exclusive” and/or “systematic” are important ! ==> Bound state spectroscopies ==> Bound state spectroscopies (Quantum number selection rules, No vacuum background) (Quantum number selection rules, No vacuum background)

ETA07 in Peniscola, 11 May 2007 『 η(958) Bound State 』, What do you like ?? 4, For Bound State observation as peaks, however, ReV>ImV ReV>ImV is important. 3, Thus, “exclusive” and/or “systematic” are important ! ==> Bound state spectroscopies ==> Bound state spectroscopies (Quantum number selection rules, No vacuum background) (Quantum number selection rules, No vacuum background) 5, And “clear (dominant) origin” is important to deduce something.

ETA07 in Peniscola, 11 May 2007 『 η(958) Bound State 』, What do you like ?? 4, For Bound State observation as peaks, however, ReV>ImV ReV>ImV is important. 3, Thus, “exclusive” and/or “systematic” are important ! ==> Bound state spectroscopies ==> Bound state spectroscopies (Quantum number selection rules, No vacuum background) (Quantum number selection rules, No vacuum background) 5, And “clear (dominant) origin” is important to deduce something. 6, η(958) seems interesting, in these senses.

ETA07 in Peniscola, 11 May 2007  ’ (958) meson … close connections with U A (1) anomaly  ’ (958) meson … close connections with U A (1) anomaly » some theoretical works › the effects of the U A (1) anomaly on  ’ properties › at finite temperature/density –T. Kunihiro, PLB219(89)363 –R.D.Pisarski, R.Wilczek, PRD29(84)338 –Y. Kohyama, K.Kubodera and M.Takizawa, PLB208(1988)165 –K.Fukushima, K.Onishi, K.Ohta, PRC63(01) –P. Costa et al.,PLB560(03)171, hep-ph/ etc… › the possible character changes of  ’ at  ≠0 » a poor experimental information on the U A (1) anomaly at finite density  ’ (958) meson 『 Specialties 』  ’ (958) meson 『 Specialties 』

ETA07 in Peniscola, 11 May 2007 Higgs mechanism Higgs mechanism U A (1) Anomaly EffectU A (1) Anomaly Effect : J p = 0 - Spontaneous Chiral Spontaneous Chiral Symmetry Breaking Symmetry Breaking Kunihiro, Hatsuda, PLB206(88)385, Fig.3 Anomaly effect in vacuum Mass of  ’ (958) meson Vogl,Weise, Prog.Part.Nuc.Phys.270, 195 (91)

ETA07 in Peniscola, 11 May 2007 First Point: Origin of Mass; ‘Chiral’+’Anomaly’ 10 NGBosons ’’’’ U A (1) D. Jido, H. Nagahiro, S. Hirenzaki, D. Jido, H. Nagahiro, S. Hirenzaki, Phys.Rev.C 85, (R) (2012) D. Jido, 『 η’meson under partial restoration of chiral symmetry in nuclear medium 』 POSTER.

ETA07 in Peniscola, 11 May 2007 『 η(958) Bound State 』, What do you like ?? 4, For Bound State observation as peaks, however, ReV>ImV ReV>ImV is important. 3, Thus, “exclusive” and/or “systematic” are important ! ==> Bound state spectroscopies ==> Bound state spectroscopies (Quantum number selection rules, No vacuum background) (Quantum number selection rules, No vacuum background) 5, And “clear (dominant) origin” is important to deduce something. 6, η(958) seems interesting, in these senses.

ETA07 in Peniscola, 11 May 2007 Strength of optical potential; ReV vs. ImV 12 Chance to have ReV  ImV Same Order!! ………. But, We love ReV  ImV !!! D. Jido, H. Nagahiro, S. Hirenzaki, Phys.Rev.C 85, (R) (2012) D. Jido, POSTER. 『 η’meson under partial restoration of chiral symmetry in nuclear medium 』 Only Real Part for η(958)N elastic channel from U A (1) Anomaly Effect

ETA07 in Peniscola, 11 May 2007  ’N interaction : Chiral Unitary model : Oset-Ramos, PLB704(11)334  ’ N  vector-baryon (VB) P B V B P P B V B V V B V B V B P 13  | a  ’ N | = 0.03 fm  1 N   1 N : singlet component – contribution to ELASTIC channel Borasoy, PRD61(00) Kawarabayashi-Ohta, PTP66(81)1789 1111 N N 1111    … free parameter  | a  ’ N | = 0.1 fm  ’ N   ’ N,  N,  N,  (PB) Weinberg-Tomozawa +  -  ’ mixing  | a  ’ N | = 0.01 fm cf. | a  ’ N | ~ 0.1 – 0.8 fm [Moscal:PLB’00] ’’’’ N

ETA07 in Peniscola, 11 May 2007 Strong Attraction but Weak absorption in Nucleus, Is really possible ? ==> 1, Experimental information ? 2, Theoretical evaluation ? H. Nagahiro, S. Hirenzaki, E. Oset, A. Ramos H. Nagahiro, S. Hirenzaki, E. Oset, A. Ramos ”eta-prime nucleus optical potential and possible eta-prime bound states" ”eta-prime nucleus optical potential and possible eta-prime bound states" Phys. Lett. B 709 (2012) 87-92; arXiv: (hep-ph). Phys. Lett. B 709 (2012) 87-92; arXiv: (hep-ph).

ETA07 in Peniscola, 11 May 2007 Reported DATA 1. CBELSA/TAPS (transparency) 1. CBELSA/TAPS (transparency) by M. Nanova et al., Phys. Lett. B (2012), Prog. Part. Nucl. Phys. (2012) by M. Nanova et al., Phys. Lett. B (2012), Prog. Part. Nucl. Phys. (2012)    GeV/c) ~ 15 – 25 MeV (No string p-dependence)    GeV/c) ~ 15 – 25 MeV (No string p-dependence) (Reasonally smaller than theoretically expected  m  ’ ) (Reasonally smaller than theoretically expected  m  ’ ) 2 (1) COSY (final state interaction) 2 (1) COSY (final state interaction) by P. Moskal et al., Phys. Lett. B 482 (2000) 356. by P. Moskal et al., Phys. Lett. B 482 (2000) 356. ABS(a  ’p )~ 0.1 fm (V(   ) ~ 10 MeV), sign is not known ABS(a  ’p )~ 0.1 fm (V(   ) ~ 10 MeV), sign is not known 2 (2) COSY (final state interaction) 2 (2) COSY (final state interaction) by P. Moskal et al., Phys. Lett. B 474 (2000) 416. by P. Moskal et al., Phys. Lett. B 474 (2000) 416. ABS( RE (a  ’p ) ) < 0.8 fm, sign is not known ABS( RE (a  ’p ) ) < 0.8 fm, sign is not known 3. RHIC: PHENIX/STAR (Low energy pion) 3. RHIC: PHENIX/STAR (Low energy pion) by T. Csorgo et al., Phys. Rev. Lett. 105 (2010) by T. Csorgo et al., Phys. Rev. Lett. 105 (2010)  m  ’ ~ 200 MeV (Roughly Consistent to NJL, but at different T)  m  ’ ~ 200 MeV (Roughly Consistent to NJL, but at different T) 15

ETA07 in Peniscola, 11 May 2007 Calculated V  ’ 16 opt Inputs for V opt ’’’’ N ’’’’ N ’’’’ N  N '''' N  N small t t 1111 B B 1111   ’ mainly contibutes to elastic channel, not to inelastic channel ~ the anomaly effect [D.Jido, H.N., S.Hirenzaki, PRC85(12)]  Only free parameter in this model. [10 –2 MeV –1 threshold Attractive sign is assumed. (No exp. Info. on sign) Nagahiro, Hirenzaki, Oset, Ramos, PLB709(2012)87  –0.193 | a  ’ N | [fm] 0.1 t’N’Nt’N’Nt’N’Nt’N’N –1.26 – 0.25i t’NNt’NNt’NNt’NN – i – –3.85 – 0.31i – i – –6.43 – 0.43i – i – –12.9 – 1.01i – i [Oset-Ramos:PLB704(11)]

ETA07 in Peniscola, 11 May 2007 Our calculation for V  ’N 17 opt optical potential V opt : Lowest order in desnity ’’’’ N ’’’’ t optical potential V opt : Second oder in density ’’’’ ’’’’ t t  ’  ’’’’ X  ’’’’

ETA07 in Peniscola, 11 May 2007 Numerical result : potential depth 18 in unit of MeV V opt total (–8.6–1.7i)(–0.1–0.1i)0.1(–8.7–1.8i) (–26.3–2.1i)(–0.6–0.9i)0.3(–26.8–3.0i) (–43.8–3.0i)(–1.3–2.5i)0.5(–44.1–5.5i) (–87.7–6.9i)(–4.1–10.4i)1(–91.8–17.2i) ~ COSY  ~ MeV ~ TAPS transparency ratio ’’’’ ’’’’ (’)(’)(’)(’) + = (’)(’)(’)(’)

ETA07 in Peniscola, 11 May 2007  ’ (958) mesic nuclei formation by (p,d) reaction momentum transfer elementary cross section pn  d  ’ target : 12 C proton kinetic energy T p =2.5GeV d p target ’’’’ n-hole forward reaction :  d = 0 deg. K. Itahashi et al., Letter of Intent for GSI (2011) H. Fujioka, Talk, Friday q [GeV/c] proton kinetic energy T p [GeV] m’m’m’m’ m  ’ – 50 MeV m  ’ – 100 MeV   no experimental information ~ 0.2  T p = 2.5 GeV J.Klaja et al., PRC81(10) (COSY) Assumption1 : Same ratio as  production ~ Assumption2 : Flat distribution in CM ~ 30  b/sr Lab.~10 CELSIUS/WASA, PRL70(97)2642

ETA07 in Peniscola, 11 May 2007 –150–100–500 –5 –10 –15 –20 20  ’ (958) mesic nuclei formation by (p,d) reaction optical potentials V0V0V0V0 W0W0W0W0 in unit of MeV cf.) NJL with KMT  m  ’ ~ –150  0 cf.) coupled-channel |a  ’ N |= fm case cf.)   ’ ~  0 CBELSA/TAPS M. Nanova et al., PLB Various combination within the range of V 0 = 0 ~ –150 MeV, W 0 = –5 ~ –20 MeV 

ETA07 in Peniscola, 11 May Numerical results : ‒ (150, 20) MeV : 12 C(p,d) 11 C  ’ d2d2d2d2 d  dE [nb/sr MeV] –150 –100 –50 E ex – E 0 [MeV] (0p 3/2 ) ‒ 1 s’s’s’s’ p’p’p’p’ d’d’d’d’ f’f’f’f’ total (BE,  )= (-93,34) MeV (-56,28) (-21,21) quasi-free contributions ( V 0, W 0 )= ‒ (150,20) MeV V 0 ~ NJL  ~ 40 MeV (> TAPS) threshold enhancement owing to the attractive potential Green’s function method [Morimatsu-Yazaki, NPA435(85)727]

ETA07 in Peniscola, 11 May Numerical results : ‒ (150, 20) MeV : 12 C(p,d) 11 C  ’ d2d2d2d2 d  dE [nb/sr MeV] –150 –100 –50 E ex – E 0 [MeV] (0p 3/2 ) ‒ 1 s’s’s’s’ p’p’p’p’ total ( V 0, W 0 )= ‒ (150,20) MeV V 0 ~ NJL  ~ 40 MeV (> TAPS) total with ( V 0, W 0 )= ‒ (0,20) MeV (0p 3/2 ) ‒ 1 d’d’d’d’ f’f’f’f’

ETA07 in Peniscola, 11 May Numerical results : ‒ (150, 20) MeV : 12 C(p,d) 11 C  ’ d2d2d2d2 d  dE [nb/sr MeV] –150 –100 –50 E ex – E 0 [MeV] (0p 3/2 ) ‒ 1 s’s’s’s’ p’p’p’p’ d’d’d’d’ f’f’f’f’ total ( V 0, W 0 )= ‒ (150,20) MeV V 0 ~ NJL  ~ 40 MeV (> TAPS)

ETA07 in Peniscola, 11 May Numerical results : ‒ (150, 15) MeV : 12 C(p,d) 11 C  ’ d2d2d2d2 d  dE [nb/sr MeV] –150 –100 –50 E ex – E 0 [MeV] ( V 0, W 0 )= ‒ (150,15) MeV V 0 ~ NJL  ~ 30 MeV (> TAPS) (0p 3/2 ) ‒ 1 s’s’s’s’ p’p’p’p’ d’d’d’d’ f’f’f’f’ total ~

ETA07 in Peniscola, 11 May Numerical results : ‒ (150, 10) MeV : 12 C(p,d) 11 C  ’ d2d2d2d2 d  dE [nb/sr MeV] –150 –100 –50 E ex – E 0 [MeV] ( V 0, W 0 )= ‒ (150,10) MeV V 0 ~ NJL  ~ 20 MeV (~ TAPS) (0p 3/2 ) ‒ 1 s’s’s’s’ p’p’p’p’ d’d’d’d’ f’f’f’f’ total

ETA07 in Peniscola, 11 May Numerical results : ‒ (150, 5) MeV : 12 C(p,d) 11 C  ’ d2d2d2d2 d  dE [nb/sr MeV] –150 –100 –50 E ex – E 0 [MeV] ( V 0, W 0 )= ‒ (150,5) MeV V 0 ~ NJL  ~ 10 MeV (< TAPS) (0p 3/2 ) ‒ 1 s’s’s’s’ p’p’p’p’ d’d’d’d’ f’f’f’f’ total

ETA07 in Peniscola, 11 May –(150,20) –(150,15) –(150,10) –(150,5) –(100,20) –(100,15) –(100,10) –(100,5) –(50,20) –(50,15) –(50,10) –(50,5)

ETA07 in Peniscola, 11 May 2007 Decomposition: Coversion(1body, 2body), Escape parts d2d2d2d2 d  dE [nb/sr MeV] –150 –100 –50 E ex – E 0 [MeV] |a  ’ N | = 1fm : coupled-channel (V 0,W 0 ) = – (92, 17) MeV  ’ escape part  ’ N  mB (conversion)  ’ NN  NN (absorption) Vopt obtained in Nagahiro, Hirenzaki, Oset, Ramos, PLB709(2012)87

ETA07 in Peniscola, 11 May 2007 Clear origin of mass is important.  ’ (958) seems Special.  ’ (958) seems Special. » Clear Origin of Mass Reduction by change with help of U A (1) change with help of U A (1) » Re V ~  m >> ImV, thanks to U A (1) Narrow Peak expected for  ’ Mesic Nuclei Formation, Missing mass spectra. Narrow Peak expected for  ’ Mesic Nuclei Formation, Missing mass spectra. Consistency with the scattering length data ? Consistency with the scattering length data ? 29 Summary

ETA07 in Peniscola, 11 May 2007