Foreshock and planetary size: A Venus-Mars comparison M. Yamauchi, Y. Futaana, R. Lundin, S. Barabash, M. Holmstrom (IRF, Kiruna, Sweden) A. Fedorov, J.-A.

Slides:



Advertisements
Similar presentations
GEO-EFFECTIVE SOLAR FLARE EVENTS IN DECEMBER 2006 RECORDED CLOSE TO VENUS AND MARS Y. Futaana, S. Barabash, M. Yamauchi, R. Lundin Swedish Institute of.
Advertisements

Mass composition of the escaping plasma at Mars Ella Carlsson IRF Kiruna Supervisors: Professor Sverker Fredriksson, LTU Professor Stas Barabash, IRF Ella.
The Johns Hopkins University Applied Physics Laboratory SHINE 2005, July 11-15, 2005 Transient Shocks and Associated Energetic Particle Events Observed.
Lundstedt (IRF-Lund). Narayan (Stockholm-U) Kanao (ISAS, Japan) The effect of the crustal magnetic field on the distribution of the ion number density.
Foreshock studies by MEX and VEX FAB: field-aligned beam FAB + FS: foreshock M. Yamauchi et al.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Martian Pick-up Ions (and foreshock): Solar-Cycle and Seasonal Variation M. Yamauchi(1); T. Hara(2); R. Lundin(3); E. Dubinin(4); A. Fedorov(5); R.A. Frahm(6);
Near-Earth Magnetotail Reconnection and Plasmoid Formation in Connection With a Substorm Onset on 27 August 2001 S. Eriksson 1, M. Oieroset 2, D. N. Baker.
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Solar wind interaction with the comet Halley and Venus
Summer student work at MSSL, 2009 Kate Husband – investigation of magnetosheath electron distribution functions. Flat-topped PSD distributions, correlation.
Ionospheric photoelectrons at Venus: ASPERA-4 observations A.J. Coates 1,2 S.M.E. Tsang 1,2, R.A. Frahm 3, J.D. Winningham 3, S. Barabash 4, R. Lundin.
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
Plasma in the Heliosheath John Richardson M.I.T. Collaborators: J. Belcher, J. Kasper, E. Stone, C. Wang.
Physics of fusion power Lecture 7: particle motion.
Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005.
1 Mirror Mode Storms in Solar Wind and ULF Waves in the Solar Wind C.T. Russell, L.K. Jian, X. Blanco-Cano and J.G. Luhmann 18 th STEREO Science Working.
The EUV impact on ionosphere: J.-E. Wahlund and M. Yamauchi Swedish Institute of Space Physics (IRF) ON3 Response of atmospheres and magnetospheres of.
IMF direction derived from cycloid-like ion distributions observed by Mars Express M. Yamauchi, Y. Futaana, R. Lundin, S. Barabash, M. Holmström (IRF-Kiruna,
Finite Gyroradius Effect in Space and Laboratory 1. Radiation belt (Ring current) 2. Auroral phenomena (Substorm current) 3. Shock acceleration and upstream.
1 Cambridge 2004 Wolfgang Baumjohann IWF/ÖAW Graz, Austria With help from: R. Nakamura, A. Runov, Y. Asano & V.A. Sergeev Magnetotail Transport and Substorms.
1 Origin of Ion Cyclotron Waves in the Polar Cusp: Insights from Comparative Planetology Discovery by OGO-5 Ion cyclotron waves in other planetary magnetospheres.
SPATIAL AND TEMPORAL MONITORING OF THE INTERMITTENT DYNAMICS IN THE TERRESTRIAL FORESHOCK Péter Kovács, Gergely Vadász, András Koppán 1.Geological and.
International Conference on Comparative Planetology: Venus - Earth - Mars ESTEC, Noordwijk, The Netherlands, Thursday 14 May :10:00, Abstract #
14 May JIM M. RAINES University of Michigan DANIEL J. GERSHMAN, THOMAS H. ZURBUCHEN, JAMES A. SLAVIN, HAJE KORTH, and BRIAN J. ANDERSON Magnetospheric.
Structure and dynamics of induced plasma tails César L. Bertucci Presented by Oleg Vaisberg Institute for Astronomy and Space Physics, Buenos Aires, Argentina.
Foreshock studies by MEX and VEX FAB: field-aligned beam FAB + FS: foreshock M. Yamauchi et al.
ELS Elegant but Light Stake. Winningham 2006 (Icarus) Oscillations * Feel body-oscillation with its fine taste.
9 May MESSENGER First Flyby Magnetospheric Results J. A. Slavin and the MESSENGER Team BepiColombo SERENA Team Meeting Santa Fe, New Mexico 11 May.
Bone Trajectories and Model Simulations Kathleen Mandt, Ray Goldstein, Christoph Koenders May 29, 2013 IES Team Meeting – San Antonio.
Equatorial signatures of an auroral bulge and a filamentation/demarcation of a transpolar arc observed by Cluster M. Yamauchi 1, I. Sandahl 1, R. Lundin.
5. Walen Test analysis The Walen Test results for Cluster 3 are as expected for a reconnection event. The test over the leading edge shows a positive correlation.
Escaping ions over polar cap. Inner magnetosphere, Bow shock/Foreshock, and Ancient magnetosphere.
Need for a mission to understand the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team (1) Swedish Institute.
1 Hybrid Simulations of the Callisto - Magnetosphere Interaction Stas Barabash and Mats Holmström Swedish Institute of Space Physics, Kiruna, Sweden.
Observation of high kinetic energy density jets in the Earth’s magnetosheath E. Amata 1, S. P. Savin 2, R. Treuman 3, G. Consolini 1, D. Ambrosino, M.F.
Group A: S. Bale(Tutor), B. Engavale, W.L. Shi, W.L. Teh, L. Xie, L. Yang, and X.G. Zhang 13,May rd COSPAR Capacity Building Workshop3 rd COSPAR.
Understanding the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team EANA-2012 (P4.30, ) (1) Swedish.
IMF derivation from Pickup Ions observed by ASPERA UT UT UT M. Yamauchi B ion ion motion in.
Analysis of Suprathermal Events Observed by STEREO/PLASTIC with a Focus on Upstream Events STEREO SWG - 20 Meredith, NH October 27-29, 2009 Josh Barry,
NASA NAG Structure and Dynamics of the Near Earth Large-Scale Electric Field During Major Geomagnetic Storms P-I John R. Wygant Assoc. Professor.
Substorm-origin sub-keV ring current ions: wedge-like structure ICS-9, Graz, ~7 Substorm : production of plasma Sub-keV ring current : fossil of.
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Krusenberg Herrgård 12 June 2007 L Nordh/Mats André Swedish Report to ILWS.
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
Measurements of 3D Structure in Solar Wind Langmuir Waves
Radio and Space Plasma Physics Group Tracking solar wind structures from the Sun through to the orbit of Mars A.O. Williams 1, N.J.T. Edberg 1,2, S.E.
Multiple Ion Acceleration at Martian Bow Shock M. Yamauchi 1, Y. Futaana 1, A. Fedorov 2, R.A. Frahm 3, E. Dubinin 4, R. Lundin 1, J.-A. Sauvaud 2, J.D.
SEPT/STEREO Observations of Upstream Particle Events: Almost Monoenergetic Ion Beams A. Klassen, R. Gomez-Herrero, R. Mueller-Mellin and SEPT Team, G.
24 January, 20011st NOZOMI_MEX Science Workshop, Jan, 2001 R. Lundin, M. Yamauchi, and H. Borg, Swedish Institute of Space Physics H. Hayakawa, M.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
Techniques for mass resolution improvement achieved by typical plasma analyzers: Modeling and simulations 1 G. Nicolaou, 1 M. Yamauchi, 1 M. Wieser, 1.
Introduction to Plasma Physics and Plasma-based Acceleration
R. Maggiolo 1, M. Echim 1,2, D. Fontaine 3, A. Teste 4, C. Jacquey 5 1 Belgian Institute for Space Aeronomy (IASB-BIRA); 2 Institute.
Observations of reflected ions downstream of shocks in the heliosphere John Richardson M.I.T. (Voyager plasma experiment) 10 – 5950 eV/q.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Cluster observation of electron acceleration by ULF Alfvén waves
Mass-loading effect in the exterior cusp and plasma mantle
M. Yamauchi1, I. Dandouras2, H. Reme2,
Sub-keV Phenomena of Dayside Ring Current
Ion Pickup Phenomenon upstream of Mars observed by ASPERA 3
1G. Nicolaou, 1M. Yamauchi, 1,2H. Nilsson, 1M. Wieser, 3A. Fedorov, 1D
Sources of < 10 keV ring current ions: supply mechanism?
Mars, Venus, The Moon, and Jovian/Saturnian satellites
M. Yamauchi1, Y. Futaana1, R. Lundin1, S. Barabash1, M. Wieser1, A
Multiple Ion Acceleration at Martian Bow Shock
Multiple Ion Acceleration at Martian Bow Shock
solar wind – bow shock - magnetosheath
Mars, Venus, The Moon, and Jovian/Saturnian satellites
M. Yamauchi1, A. Schillings1,2, R. Slapak3, H. Nilsson1, I. Dandouras3
Presentation transcript:

Foreshock and planetary size: A Venus-Mars comparison M. Yamauchi, Y. Futaana, R. Lundin, S. Barabash, M. Holmstrom (IRF, Kiruna, Sweden) A. Fedorov, J.-A. Sauvaud, C. Mazelle (CESR, Toulouse, France) R.A. Frahm, J.D. Winningham (SwRI, San Antonio, USA) E. Dubinin, M. Fraenz (MPS, Katlenburg-Lindau, Germany) T.L. Zhang, W. Baumjohann (IWF, Graz, Austria) A.J. Coates (UCL/MSSL, Surrey, UK)

FAB: field-aligned beam FAB + FS: foreshock 1. Introduction: Earth's knowledge 2. Venus (similar to Earth) 3. Mars (Different from Venus/Earth) Outline

// beam ~ |V sw |

Venus (VEX) connected to BS

SW 1. Field- aligned H Gyrating H + with large V //.  Same as the Earth

cf. Earth V  1 - V // (projection at V  2 =0) V  1 - V  2 (cut at V // =-1000 km/s) Venus foreshock ≈ Earth foreshock How about Mars?

(1) only "ring" distribution (2) no "foreshock" signature (examined ~ 500 traversals) BS Quite different from Venus:

(1) Alfvén Mach number (M A ) x  (2) Gyroradius (r g ) / Bow-shock radius (R S ) (3) Inertia length (c/  pi ) / Bow-shock size (R S ) SW parameter R S (BS radius) M A (  n 1/2 V/B) c/  pi (  n -1/2 ) & c/  pi R S r g (  V/B) & r g /R S Venus & 1 Mars~ 0.5~ 1.4~ 3 & ~ 5~ 4 & ~ 8 For Mars: R S ~ 5000 km for Martian Subsolar 2 keV H + under 6 nT  r g = 1000 km 5/cm 3 H +  c/  pi = 100 km Venus-Mars difference: (1) parameters

1. solar wind, 2&3. bow-shock cold ion, 4. sneak out ∆V // << V // (yes), ∆V // << V // (yes), ∆V // ~ V // (no), ∆∆ ∆∆ Due to the finite curvature, some ions do not re-enter

Venus-Mars difference: (2) cold H+ (1) Gravity: Venus > Mars  (2) Exosphere: Venus < Mars  (3) newly born H+: Venus << Mars (This is clear from the difference in “ring distribution”)  (4) cold H+ at Bow shock: Venus << Mars (High density cold H+ is observed only for Mars)

(1) Alfvén Mach number (M A ) (2) Gyroradius (r g ) / Bow-shock radius (R S ) (3) Inertia length (c/  pi ) / Bow-shock size (R S ) (4) Cold ion inside Bow-shock parameterRSRS MAMA c/  pi R S r g /R S cold H+ at BS Venus very little Mars~ 0.5~ 1.4~ 5~ 8a lot Venus - Mars difference (summary) ?? ??

Examine close to the Bow Shock MEX We sometimes observed “multiple-ring” structure. c/  pi rgrg

beyond c/  pi within r g = reflected ions Three types of accelerated ions within c/  pi = foot ions beyond r g = pickup ions  obtain B direction

3rd // acc 2nd // acc main // acc pre-acc heating

green: foot blue: primary ring red: 1st branch purple: 2nd branch brown: 3rd branch Multiple acceleration Gyro-phase bunching red: half gyro purple: one third gyro

 within BS escape (Since V dHT > |V SW |, dHT frame is erroneous)

SW Reflection  convert V  to V // in SW frame ∆∆ The observed multiple ring structure is well explained by multiple specular reflection. But, why is it observed outside the foot region?  no : Finite bow shock size compared to r g. yes: Cold ion in the bow shock  This may explain “non-specular reflection” at subsolar.

Special features for Mars Energy is stepping (due to reflection?) Gyro-bunching effect (due to short distance?) with gradual  acceleration (why?) Two different scale length No specular reflection near the bow shock (need to confirm)

Venus ≈ Earth No internal magnetic field. Planet is the same size as the Earth  Smaller bow shock size than the Earth, yet MHD regime. Effect of cod ions in the bow shock can be ignored. No internal magnetic field. Planet is smaller than the Earth.  The bow shock size is too small to treat with MHD. Effect of cod ions in the bow shock cannot be ignored. Mars  Earth

(1) Alfvén Mach number (M A ) (2) Gyroradius (r g ) / Bow-shock radius (R S ) (3) Inertia length (c/  pi ) / Bow-shock size (R S ) (4) Cold ion inside Bow-shock parameterRSRS MAMA c/  pi R S r g /R S cold H+ at BS Earth 5~ 1.2~ 0.3~ 0.4no Venus very little Mars~ 0.5~ 1.4~ 5~ 8a lot Ending (add Earth) ?? ??

End

IMA looking direction VEX

Multiple-Reflection S E S: toward BS from left S&E: toward BS from left S ~ V HT = along BS E: along BS S: along BS E: toward BS E: toward BS from right x x (0.6, -0.8, 0) XYZ

3rd // acc 2nd // acc main // acc pre-acc heating Time = Spatial variation

B (N-direction) is estimated from minimum variance method applied to the ring distribution Classifying counts in // and  directions Time = Spatial variation

Three configurations (on-going work) Done

Summary Venus Express / ASPERA-4 often observes back- streaming H + in the foreshock region of Venus, in a similar ways as the Terrestrial foreshock, i.e., field- aligned component, and intermediate (gyrating) component Mars Express / ASPERA-3 (same instrumentation as VEX) did not observe similar ions in the Martian foreshock region beyond the foot region. Instead, it shows different type of acceleration in the foot region, indicating the ion trajectory (history) during its gyromotion. The finite gyroradius effect makes Mars a perfect laboratory to study acceleration processes.