Bisectors of a Triangle Geometry. Objectives Use properties of perpendicular bisectors of a triangle. Use properties of angle bisectors of a triangle.

Slides:



Advertisements
Similar presentations
5.2 – Use Perpendicular Bisectors A segment, ray, line, or plane, that is perpendicular to a segment at its midpoint is called a perpendicular bisector.
Advertisements

Chapter 5 Perpendicular Bisectors. Perpendicular bisector A segment, ray or line that is perpendicular to a segment at its midpoint.
Bell Problem. 5.2 Use Perpendicular Bisectors Standards: 1.Describe spatial relationships using coordinate geometry 2.Solve problems in math and other.
5.2 Bisectors of a Triangle Concurrent lines CircumcenterIncenter.
GOALS: 1. To know the definitions of incenter, circumcenter, and centroid. 2. To identify the incenter, circumcenter, and centroid given a diagram. 3.
Relationships within triangles
Points of Concurrency in Triangles Keystone Geometry
5-3 Concurrent Lines, Medians, Altitudes
Objectives: Discover points of concurrency in triangles. Draw the inscribed and circumscribed circles of triangles. Warm-Up: How many times can you subtract.
5.2 Bisectors of Triangles5.2 Bisectors of Triangles  Use the properties of perpendicular bisectors of a triangle  Use the properties of angle bisectors.
Chapter 5 Perpendicular Bisectors. Perpendicular bisector A segment, ray or line that is perpendicular to a segment at its midpoint.
Perpendicular and Angle Bisectors of a Triangle Sec 5.2 Goal: To use properties of perpendicular bisectors of a triangle. To use properties of angle bisectors.
Lesson 5-1 Bisectors, Medians and Altitudes. Objectives Identify and use perpendicular bisectors and angle bisectors in triangles Identify and use medians.
Concurrent Lines Geometry Mrs. King Unit 4, Day 7.
5-3 Points of Concurrency Objective: To identify properties of perpendicular bisectors and angle bisectors.
5.3 - Concurrent Lines, Medians, and Altitudes
5.2 Bisectors of a Triangle Geometry Ms. Reser. Objectives Use properties of perpendicular bisectors of a triangle as applied in Example 1. Use properties.
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
Bisectors of a Triangle
5.2 Bisectors of a Triangle Goal: To use segment bisectors and perpendicular lines to solve problems involving triangles and real world scenarios.
5.3: Concurrent Lines, Medians and Altitudes Objectives: To identify properties of perpendicular bisectors and angle bisectors To identify properties of.
3.6—Bisectors of a Triangle Warm Up 1. Draw a triangle and construct the bisector of one angle. 2. JK is perpendicular to ML at its midpoint K. List the.
Points of Concurrency Where multiple lines, segments rays intersect, have specific properties.
Special Segments of Triangles
5-3 Bisectors in Triangles
5.2 Bisectors of a Triangle Geometry Mr. Davenport Fall 2009.
5.2 – Use Perpendicular Bisectors A segment, ray, line, or plane, that is perpendicular to a segment at its midpoint is called a perpendicular bisector.
Section 5.2 Use Perpendicular Bisectors. Vocabulary Perpendicular Bisector: A segment, ray, line, or plane that is perpendicular to a segment at its midpoint.
Perpendicular Bisectors of a Triangle Geometry. Equidistant A point is equidistant from two points if its distance from each point is the same.
Geometry Sections 5.1 and 5.2 Midsegment Theorem Use Perpendicular Bisectors.
Concurrencies for Medians, Altitudes, and Bisectors
Bisectors in Triangles Chapter 5 Section 3. Objective Students will identify properties of perpendicular bisectors and angle bisectors.
Warm Up Week 7 Tell if the geometric figure can have a bisector. 1) angle 2) ray 3) line 4) segment 5) point.
Lesson 5-2 Use perpendicular bisectors
5.3: Concurrent Lines, Medians and Altitudes Objectives: Students will be able to… Identify properties of perpendicular bisectors and angle bisectors Identify.
Perpendicular and Angle Bisectors Perpendicular Bisector – A line, segment, or ray that passes through the midpoint of a side of a triangle and is perpendicular.
5.2 Bisectors of a Triangle Advanced Geometry. PERPENDICULAR BISECTOR OF A TRIANGLE A perpendicular bisector of a triangle is a line (ray or segment)
5-2 Perpendicular and Angle Bisectors. Perpendicular Bisectors A point is equidistant from two objects if it is the same distance from each. A perpendicular.
Chapter 5 Lesson 3 Objective: Objective: To identify properties of perpendicular and angle bisectors.
5.3 Use Angle Bisectors of Triangles Hubarth Geometry.
OBJECTIVE: To identify properties of perpendicular bisectors and angle bisectors BIG IDEAS:Reasoning and Proof Measurement ESSENTIAL UNDERSTANDINGS: A.
Geometry Sections 5.2 & 5.3 Points of Concurrency.
Medians, and Altitudes. When three or more lines intersect in one point, they are concurrent. The point at which they intersect is the point of concurrency.
Bisectors of a Triangle Geometry Objectives Use properties of angle bisectors of a triangle. Use properties of perpendicular bisectors of a triangle.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
5.3 Notes Bisectors in Triangles. Concurrent When three or more lines intersect at one point, they are concurrent The point at which they intersect is.
5.2 B ISECTORS OF A T RIANGLE We have learned about the perpendicular bisector of a segment and the bisector of an angle. Now we will learn about the special.
Section 5.2 Perpendicular Bisectors Chapter 5 PropertiesofTriangles.
5.2 Bisectors of Triangles Guiding Question: How can an event planner use perpendicular bisectors of triangles to find the best location for a firework.
Section 5.2: Bisectors of a Triangle. Perpendicular bisector of a triangle – A line, ray, or segment that is perpendicular to a side of the triangle at.
Perpendicular bisectors and angle bisectors within triangles
Medians and Altitudes of Triangles
Perpendicular Bisectors
Properties of Triangles
5-3 Bisectors in Triangles
5.2: Bisectors of a Triangle
4.8 Concurrent Lines.
Section 5.1.
5.3 Bisectors of a Triangle
5.4 Use Medians and Altitudes
5.2 Bisectors of a Triangle
Circumscribed circles of a triangle
5.3 Concurrent Lines, Medians, and Altitudes
5.2 Bisectors of a Triangle
Bisectors of a Triangle
5.2 Bisectors of Triangles
Properties of Triangles
Bisectors of a Triangle
Constructing a Circumcenter
concurrency that we will be discussing today.
Presentation transcript:

Bisectors of a Triangle Geometry

Objectives Use properties of perpendicular bisectors of a triangle. Use properties of angle bisectors of a triangle.

Perpendicular Bisector of a Triangle A perpendicular bisector of a triangle is a line (or ray or segment) that is perpendicular to a side of the triangle at the midpoint of the side. Perpendicular Bisector

Class Activity 1.Cut four large acute scalene triangles out of paper. Make each one different. 2.Choose one triangle. Fold the triangle to form the perpendicular bisectors of the three sides. Do the three bisectors intersect at the same point? 3.Repeat the process for the other three triangles. What do you observe? Write your observation in the form of a conjecture. 4.Choose one triangle. Label the vertices A, B, C. Label the point of intersection of the perpendicular bisectors as P. Measure AP, BP, and CP. What do you observe?

Notes: When three or more lines (or rays or segments) intersect in the same point, then they are called concurrent lines (or rays or segments). The point of intersection of the lines is called the point of concurrency.

About concurrency The three perpendicular bisectors of a triangle are concurrent. The point of concurrency may be inside the triangle, on the triangle, or outside the triangle. 90° Angle- Right Triangle

About concurrency The three perpendicular bisectors of a triangle are concurrent. The point of concurrency may be inside the triangle, on the triangle, or outside the triangle. Acute Angle- Acute Scalene Triangle

About concurrency The three perpendicular bisectors of a triangle are concurrent. The point of concurrency may be inside the triangle, on the triangle, or outside the triangle. Obtuse Angle- Obtuse Scalene Triangle

Notes: The point of concurrency of the perpendicular bisectors of a triangle is called the circumcenter of the triangle. In each triangle, the circumcenter is at point P.

Theorem about Concurrency of Perpendicular Bisectors of a Triangle The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle. BA = BD = BC

What about the circle? The diagram for Theorem above shows that a circumcenter is the center of the circle that passes through the vertices of the triangle. The circle is circumscribed about ∆ACD. Thus the radius of this circle is the distance from the center to any of the vertices.

Ex. 1: Using perpendicular Bisectors FACILITIES PLANNING. A company plans to build a distribution center that is convenient to three of its major clients. The planners start by roughly locating the three clients on a sketch and finding the circumcenter of the triangle formed. A. Explain why using the circumcenter as the location of the distribution center would be convenient for all the clients. B. Make a sketch of the triangle formed by the clients. Locate the circumcenter of the triangle. Tell what segments are congruent.

Using angle bisectors of a triangle An angle bisector of a triangle is a bisector of an angle of the triangle. The three angle bisectors are concurrent. The point of concurrency of the angle bisectors is called the incenter of the triangle, and it always lies inside the triangle.

Theorem about Concurrency of Angle Bisectors of a Triangle The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle. PD = PE = PF

Notes: The diagram for Theorem above shows that the incenter is the center of the circle that touches each side of the triangle once. The circle is inscribed within ∆ABC. Thus the radius of this circle is the distance from the center to any of the sides.

Ex. 2 Using Angle Bisectors The angle bisectors of ∆MNP meet at point L. What segments are congruent? Find LQ and LR. ML = 17 MQ = 15

The three angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle. So, LR  LQ  LS

b. Use the Pythagorean Theorem to find LQ in ∆LQM a 2 + b 2 = c 2 (LQ) 2 + (MQ) 2 = (LM) 2 Substitute (LQ) 2 + (15) 2 = (17) 2 Substitute values (LQ) 2 + (225) = (289) Multiply (LQ) 2 = (64) Subtract 225 from each side. LQ = 8 Find the positive square root ►So, LQ = 8 units. Because LR  LQ, LR = 8 units