5-2 Perpendicular and Angle Bisectors. Perpendicular Bisectors A point is equidistant from two objects if it is the same distance from each. A perpendicular.

Slides:



Advertisements
Similar presentations
5.3 Bisectors in a Triangle
Advertisements

Section 1.5 Special Points in Triangles
5.2 – Use Perpendicular Bisectors A segment, ray, line, or plane, that is perpendicular to a segment at its midpoint is called a perpendicular bisector.
Chapter 5 Perpendicular Bisectors. Perpendicular bisector A segment, ray or line that is perpendicular to a segment at its midpoint.
Bell Problem. 5.2 Use Perpendicular Bisectors Standards: 1.Describe spatial relationships using coordinate geometry 2.Solve problems in math and other.
5.2 Bisectors of a Triangle Concurrent lines CircumcenterIncenter.
5-3 Concurrent Lines, Medians, Altitudes
Constructing Circumscribed Circles Adapted from Walch Education.
5.2 Perpendicular and Angle Bisectors
5.2 Bisectors of Triangles5.2 Bisectors of Triangles  Use the properties of perpendicular bisectors of a triangle  Use the properties of angle bisectors.
Chapter 5 Perpendicular Bisectors. Perpendicular bisector A segment, ray or line that is perpendicular to a segment at its midpoint.
Perpendicular & Angle Bisectors. Objectives Identify and use ┴ bisectors and  bisectors in ∆s.
Concurrent Lines Geometry Mrs. King Unit 4, Day 7.
5-3 Points of Concurrency Objective: To identify properties of perpendicular bisectors and angle bisectors.
5.3 - Concurrent Lines, Medians, and Altitudes
Top second box. MEDIANS! To the left Point of Concurrency Location It will always be located inside the triangle, because you draw a median from the.
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
Bisectors of a Triangle
5.2 Bisectors of a Triangle Goal: To use segment bisectors and perpendicular lines to solve problems involving triangles and real world scenarios.
Relationships Within Triangles Chapter5. Triangle Midsegment Theorem If a segment joins the midpoints of two sides of a triangle, then the segment is.
5.3: Concurrent Lines, Medians and Altitudes Objectives: To identify properties of perpendicular bisectors and angle bisectors To identify properties of.
3.6—Bisectors of a Triangle Warm Up 1. Draw a triangle and construct the bisector of one angle. 2. JK is perpendicular to ML at its midpoint K. List the.
Unit 5 Notes Triangle Properties. Definitions Classify Triangles by Sides.
Points of Concurrency Where multiple lines, segments rays intersect, have specific properties.
Points of Concurrency Triangles.
Special Segments of Triangles
5-3 Bisectors in Triangles
5-2 Bisectors of a Triangle
Perpendicular Bisectors ADB C CD is a perpendicular bisector of AB Theorem 5-2: Perpendicular Bisector Theorem: If a point is on a perpendicular bisector.
Section 5-1 Perpendiculars and Bisectors. Perpendicular bisector A segment, ray, line, or plane that is perpendicular to a segment at its midpoint.
Bisectors in Triangles Section 5-2. Perpendicular Bisector A perpendicular tells us two things – It creates a 90 angle with the segment it intersects.
Section 5.2 Use Perpendicular Bisectors. Vocabulary Perpendicular Bisector: A segment, ray, line, or plane that is perpendicular to a segment at its midpoint.
Geometry Lesson 5 – 1 Bisectors of Triangles Objective: Identify and use perpendicular bisectors in triangles. Identify and use angle bisectors in triangles.
Perpendicular Bisectors of a Triangle Geometry. Equidistant A point is equidistant from two points if its distance from each point is the same.
Geometry Sections 5.1 and 5.2 Midsegment Theorem Use Perpendicular Bisectors.
Bisectors in Triangles Chapter 5 Section 3. Objective Students will identify properties of perpendicular bisectors and angle bisectors.
5.6 Angle Bisectors and Perpendicular Bisectors
5.3: Concurrent Lines, Medians and Altitudes Objectives: Students will be able to… Identify properties of perpendicular bisectors and angle bisectors Identify.
5-1 Bisectors of Triangles The student will be able to: 1. Identify and use perpendicular bisectors in triangles. 2. Identify and use angle bisectors in.
Perpendicular and Angle Bisectors Perpendicular Bisector – A line, segment, or ray that passes through the midpoint of a side of a triangle and is perpendicular.
Triangle Bisectors 5.1 (Part 2). SWBAT Construct perpendicular bisectors and angle bisectors of triangles Apply properties of perpendicular bisectors.
5.3.1 Use Angle Bisectors of Triangles Chapter 5: Relationships within Triangles SWBAT: Define and use Angle Bisector Theorem. Define incenter You will.
Chapter 5 Lesson 3 Objective: Objective: To identify properties of perpendicular and angle bisectors.
4.5 isosceles and Equilateral Triangles -Theorem 4.3: Isosceles Triangle theorem says if 2 sides of a triangle are congruent, then the angles opposite.
Chapter 5, Section 1 Perpendiculars & Bisectors. Perpendicular Bisector A segment, ray, line or plane which is perpendicular to a segment at it’s midpoint.
Medians, and Altitudes. When three or more lines intersect in one point, they are concurrent. The point at which they intersect is the point of concurrency.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
WARM UP: What is RU? In the diagram above, if RT is extended to contain a point W so the UW has a length of 8, what is the length of SW? What is CD?
5.3 Notes Bisectors in Triangles. Concurrent When three or more lines intersect at one point, they are concurrent The point at which they intersect is.
5.2 Bisectors of Triangles Guiding Question: How can an event planner use perpendicular bisectors of triangles to find the best location for a firework.
Perpendicular bisectors and angle bisectors within triangles
Points of Concurrency Objective: Students will understand terms of concurrency, how to construct them and what they do.
Section 5 – 3 Concurrent Lines, Medians, and Altitudes
Medians, Altitudes and Perpendicular Bisectors
Perpendicular Bisectors
Properties of Triangles
5-3 Bisectors in Triangles
The intersection of the perpendicular bisectors.
Transformations Transformation is an operation that maps the original geometric figure, the pre-image , onto a new figure called the image. A transformation.
If we use this next year and want to be brief on the concurrency points, it would be better to make a table listing the types of segments and the name.
Bisectors, Medians and Altitudes
Section 5.1.
6.1 Perpendicular and Angle Bisectors
5.3 Concurrent Lines, Medians, and Altitudes
Module 15: Lesson 5 Angle Bisectors of Triangles
Point of Concurrency Definition: the point at which two or more lines, line segments or ray intersect. Picture:
Bisectors, Medians, and Altitudes
Bisectors of a Triangle
5.2 Bisectors of Triangles
Bisectors of a Triangle
Presentation transcript:

5-2 Perpendicular and Angle Bisectors

Perpendicular Bisectors A point is equidistant from two objects if it is the same distance from each. A perpendicular bisector of a segment is a line, segment, or ray that is perpendicular to the segment at its midpoint. Perpendicular Bisector Theorem: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. Converse of the Perpendicular Bisector Theorem: If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Using the Perpendicular Bisector Theorem What is the length of AB?

 What is the length of QR?

Angle Bisectors The distance from a point to a line is the length of the perpendicular segment from the point to the line. Angle Bisector Theorem: If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle. Converse of the Angle Bisector Theorem: If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.

Using the Angle Bisector Theorem What is the length of RM?

 What is the length of FB?

5-3 Bisectors in Triangles

Concurrency When three of more lines intersect at one point, they are concurrent. The point at which they intersect is the point of concurrency. Concurrency of Perpendicular Bisectors Theorem: The perpendicular bisectors of the sides of a triangle are concurrent at a point equidistant from the vertices.

Circumcenters The point of concurrency of the perpendicular bisectors of a triangle is called the circumcenter. – You can use the circumcenter to circumscribe the triangle. The circumcenter of a triangle can be INSIDE, ON, or OUTSIDE the triangle.

Incenters Concurrency of Angle Bisectors Theorem: The bisectors of the angles of a triangles are concurrent at a point equidistant from the sides of the triangle. The point of concurrency of the angle bisectors of a triangle is called the incenter. – The incenter is the center of the circle that can be inscribed in the triangle.

Using the Incenter of a Triangle GE = 2x – 7 and GF = x + 4. What is GD?

 QN = 5x + 36 and QM = 2x What is QO?