Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.

Slides:



Advertisements
Similar presentations
EXCITON-PLASMON COUPLING AND BIEXCITONIC NONLINEARITIES IN INDIVIDUAL CARBON NANOTUBES Igor Bondarev Physics Department North Carolina Central University.
Advertisements

Size-dependent recombination dynamics in ZnO nanowires
Carrier and Phonon Dynamics in InN and its Nanostructures
Electronic Structure Carbon nanotubes possess large π -electronic systems similar to planar graphene 1 Reduced dimensionality around the circumference.
Influence of solvation on 1-aminonaphthalene photophysics: ultrafast relaxation in the isolated molecule, molecular clusters and solution by Raúl Montero,
An ab-initio Study of the Growth and the Field Emission of CNTs : Nitrogen Effect Hyo-Shin Ahn §, Tae-Young Kim §, Seungwu Han †, Doh-Yeon Kim § and Kwang-Ryeol.
TeraHertz Kerr effect in GaP crystal
RAMAN SPECTROSCOPY Scattering mechanisms
Interpretation of the Raman spectra of graphene and carbon nanotubes: the effects of Kohn anomalies and non-adiabatic effects S. Piscanec Cambridge University.
Generation of short pulses
Optical properties of single CdSe/ZnS colloidal QDs on a glass cover slip and gold colloid surface C. T. Yuan, W. C. Chou, Y. N. Chen, D. S. Chuu.
CNT – Characteristics and Applications
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Optical study of Spintronics in III-V semiconductors
Jie Shan (a), Feng Wang (b), Ernst Knoesel (c), Mischa Bonn (d) Jie Shan (a), Feng Wang (b), Ernst Knoesel (c), Mischa Bonn (d), and Tony F. Heinz (b)Tony.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Terahertz Conductivity of Silver Nanoparticles Abstract: The electrical conductivity for bulk metal is described by the well-known Drude model. As the.
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
Institute of Optics, University of Rochester1 Carbon Nanotubes: theory and applications Yijing Fu 1, Qing Yu 2 1 Institute of Optics, University of Rochester.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.
Ultrafast processes in Solids
1 Femtosecond Time and Angle-Resolved Photoelectron Spectroscopy of Aqueous Solutions Toshinori Suzuki Kyoto University photoelectron.
ITOH Lab. Hiroaki SAWADA
LOGO What a rule surfactants play in synthesis CNTs array Shuchen Zhang, Yanhe Zhang
Institute of Materials Research and Engineering 3 Research Link, Singapore Website: Tel:
Charge Carrier Related Nonlinearities
WP6 : metrology of the metal/semiconductor ratio (MSR) Goal : developing a routine method to measure the MSR Optical spectroscopy technique(s) : * optical.
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
1 Miyasaka Laboratory Yusuke Satoh David W. McCamant et al, Science, 2005, 310, Structural observation of the primary isomerization in vision.
Carbon Nanotube Formation Detection of Ni atom and C 2 Gary DeBoer LeTourneau University Longview, TX NASA Johnson Space Center Thermal Branch Structures.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Johnson Space Center May 18, Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Ressonància magnètica: ESR, RMN ESR o EPR: Ressonància de Spin Electrònic, o Ressonància Paramagnètica Electrònica RMN: Ressonància Magnètica Nuclear.
Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric,
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Magnetization dynamics
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Joel Q. Grim 2014 Continuous-wave pumped lasing using colloidal CdSe quantum wells Joel Q. Grim, Sotirios Christodoulou, Francesco.
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Photoluminescence-excitation spectra on n-type doped quantum wire
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
光誘起キャリア緩和ダイナミクスおよびその偏光特性
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI.
DMR : Carrier and Spin Dynamics in InSb- and InMnSbBased Heterostructures, PI: Giti Khodaparast, Physics Department, Virginia Tech.,,  The goal.
Flow of Vibrational Energy in Polyatomic Molecules: Using Acetylenic Anharmonic Couplings to Follow Vibrational Dynamics Steven T. Shipman and Brooks H.
Coherent Phase Control of Electronic Transitions in Gallium Arsenide Robert J. Gordon, Sima Singha, and Zhan Hu Department of Chemistry University of Illinois.
Tokyo Institute of Technology Hiroyuki Kawasaki, Asao Mizoguchi, Hideto Kanamori High Resolution Infrared Spectroscopy of CH 3 F-(ortho-H 2 ) n cluster.
Molecular Spectroscopy OSU June TRANSIENT ABSORPTION AND TIME-RESOLVED FLUORESCENCE STUDIES OF SOLVATED RUTHENIUM DI-BIPYRIDINE PSEUDO-HALIDE.
J.S. Colton, Universal scheme for opt.-detected T 1 measurements Universal scheme for optically- detected T 1 measurements (…and application to an n =
橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.
Chiral Separation:  Surfactant A: DOC; Surfactant B: SDS  Results: rainbow separation Methods & Results CNTs + Surfactant A CNT Supernatant (50%) % iodixanol.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
Carbon Nanotubes and Its Devices and Applications
Terahertz Charge Dynamics in Semiconductors James N. Heyman Macalester College St. Paul, MN.
Introduction to Laser Spectroscopic Techniques for Condensed Matter.
Optical gain in 2D solution processable CdSe nanoplatelets
Carlo Altucci Laboratory of Biophotonics and Ultrafast Processes Dipartimento di Fisica Università di Napoli "Federico II " Napoli, Italy
SWNT Periodic Table Primary and secondary gap semiconductors.
ISMS 2016 Urbana, IL Vura-Weis Group - UIUC
Magneto-Photoluminescence of Carbon Nanotubes at Ultralow Temperatures
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Presentation transcript:

Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate school of Science and Technology, Chiba University, Chiba, Japan UC Santa Barbara

1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

Carbon Nanotubes Extremely large aspect ratio Large variety Exploration of 1-D physics  ultimate quantum wire 1 nm up to ~ 1 cm Metal Semiconductor h 1s  2s EgEg

MetallicSemiconducting C h = na + mb n – m = 3M + 2) M  0, = 0 3) M  0, =  1 1) M = = 0 Metal Narrow Gap Semicond. Large Gap Semicond. Single-Walled Carbon Nanotubes

b a Unit cell Chiral Vector and Unit Cell O A T = t 1 a + t 2 b=(t 1, t 2 ) C h = na + mb=(n, m) ChCh T (4. 2)

Classification of Carbon Nanotubes Zigzag (n, 0) Armchair (n, n) C h = na 1 + ma 2 =(n, m) Chiral (n, m) a2a2 a1a1 n  m  0

1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

Bundled Carbon Nanotubes

Problem: Coexistence and Electronic Coupling of Different (n,m) Tubes M. Ichida et al., J. Phys. Soc. Jpn. 68, 3131 (1999). H1H1 H2H2 H3H3 E2E2 E1E1 E3E3 DOS E 100 meV

Carrier Relaxation Dynamics in Bundled Carbon Nanotubes Metallic Semiconductor V. B C. B Bundled SWNTs  < 1 ps J-S. Lauret et al., Phys. Rev. Lett (2003)

Isolation of the Carbon Nanotubes Sonicate D2OD2O SDS SWNT Soap solution O'Connell et al., Science 297, 26 (2002)

D2OD2O SDS SWNT O'Connell et al., Science 297, 26 (2002) Produced by HiPco  Dispersed in 1% D 2 O solution of Sodium Dodecyl Sulfate (SDS)  Sonicated  Centrifuged H1H1 H2H2 H3H3 E2E2 E1E1 E3E3 DOS E Individually-Suspended SWNTs

Photo-Induced Carrier Relaxation Dynamics Metallic Semiconductor V. B C. B V. B C. B PL Bundled SWNTs Isolated SWNTs  < 1 ps  ~ ns

peak (n,m) Each peak corresponds to particular (n,m) (10,3) (7,6) (7,5) (10,2) (9,4) (8,6) (12,1) (11,3) (10,5) (9,7) (8,7) (9,5) (10,6) (9,8) (11,4) E excitation emission PL Excitation (PLE) Spectroscopy

H1H1 H2H2 H3H3 E2E2 E1E1 E3E3 DOS E  n = 0 See, T. Ando, Electronic States and Transport in Carbon Nanotubes. Allowed Optical Transitions for Isolated SWNTs

1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

Single-Walled Carbon Nanotubes photo-induced carrier lifetimes Hertel and Moos, Phys. Rev. Lett. 84, 5002 (2000) Chen et al., Appl. Phys. Lett. 81, 975 (2002) Han et al., Appl. Phys. Lett. 82, 1458 (2003) Lauret et al., Phys. Rev. Lett. 90, (2003) Korovyanko et al. Phys. Rev. Lett. 92, (2004) < 1 ps Bundled SWNT ps Isolated SWNT G. N. Ostojic et al., Phys. Rev. Lett. 92, (2004) Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004) F. Wang et al., Phys. Rev. Lett. 92, (2004) L. Huang et al., Phys. Rev. Lett. 93, (2004) ~ 20 ns Theoretical C. D. Spataru et al., cond-mat/ v1 (2003) ~ ns Isolated SWNT This work

Our previous study used a high-peak power OPA laser  < 20 ps Auger type recombination ?Phononed assist relaxation ? Catalyst-particle-mediated ?Exciton-exciton interaction ? Average inter-exciton dististance Purpose Photo-induced carrier relaxation dynamics in the low excitation limit Transient absorption  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) Phys. Rev. Lett. 92, (2004) 0.06 – 5.7 mJ/cm 2 J. Chem. Phys. 120, 3368 (2004) Time resolved fluence  ~ 7 ps mJ/cm 2 Estimate the radiatibe relaxation time as 110 ns Phys. Rev. Lett. 92, (2004)  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) G. N. Ostojic et al., Phys. Rev. Lett. 92, (2004)  ~ 0.06 – 5.7 mJ/cm 2 Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004)  ~ 7 ps mJ/cm 2 F. Wang et al., Phys. Rev. Lett. 92, (2004) Relaxation Dynamics of Photo-excited Carriers in SWNTs RadiativeNon-radiative ~ ps ~ ns Tube-tube interaction Catalyst particles at the tube ends Nonradiative recombination via surface defects etc. Exciton-exciton interaction ? What kind of the Non-radiative relaxation is taking place ? ~1mJ/cm2 ~640 e-h pairs in 1  m SWNT PRL. 92, (2004) 1 e-h pair per 1  m SWNT

Absorption shows sharp peaks SWNT is well isolated Single-Walled Carbon Nanotube Samples Absorption spectrum Excited SWNTs are (12,5), (12,1), (11,3) (10,5), (9,8), (9,7) Raman spectrum SWNT SDS micelle SDS miscelled SWNT Science VOL (2002)

Experimental Setup / 2 Pulse picker 80 MHz  800kHz Ti:S laser 80MHz Excitation fluence: 100 nJ/cm 2 Pump : Probe = 10 : 1 Si detector Lock in Laser wavelength: eV (E2H2) Delay stage (2 ns) Aperture SWNT

Checking the Experimental Setup GaAs Polarization of the pump and probe pulse No difference

Photo-Induced Carrier Dynamics in SWNT in Low Excitation Limit Pump-probe signal exists even at 1 nano-second !!! Room temperature Repetition rate: 8 MHz Polarization of the pump and probe: Previous reports in high excitation  < 120 ps

1:  < 1 ps 2:  ~ 1 ns Decay Dynamics

E E1 DOS E2 H2 H1 Decay Dynamics ~ ns E2H2  E1H1 intraband transition E1H1 carrier recombination < 1 ps

Polarization Memory Polarization memory exists even at 1 ns !!! In bundled SWNT, the polarization decay time ~ 10 ps O. J. Korovyanko et al., Phys. Rev. Lett (2004) Polarization of the pump and probe pulses

Polarization Memory n  I pump cos 2  Pump Absorption is reduced No change Pump  Polarization of Pump

1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

Vertically Aligned Carbon Nanotubes 1  m SWNTs Quartz Y. Murakami et al. (Maruyama’s group at Univ. of Tokyo) Chemical Physics Letters 385 (2004)

Why do we use vertically aligned carbon nanotubes ? Randomly oriented Perpendicular e  l k  l Parallel e // l k  l From top e  l k // l BundledIsolated Vertically aligned carbon nanotubes Individually suspended carbon nanotubes

Optical Selection Rules in Bundled Carbon Nanotubes Parallel polarization e. g. H0  E0 H1  E1 H2  E2  n = 0 Perpendicular polarization e. g. H0  E1 H1  E0 H1  E2 H2  E1  n ≠ 0

Sample Two kinds of plasmon peaks CNT p 0°0° 0° 45° 5.2 eV Perpendicular polarization 0°0° 4.5 eV Parallel polarization 45° 

Experimental setup / 2 Ti:s laser 80MHz Excitation fluence: 640 nJ/cm 2 Excitation power: 10 mW Focus size 50 mm Pump : Probe = 10 : 1 Si detector Lock in Delay stage (300 ps) Aperture SWNT Lens f = 100 mm 25 mm CNT Probe Pump

Photo-induced carrier dynamics in vertically aligned carbon nanotubes P  Polarization memory Time delay [ps]

Discussion n  I pump cos 2  Plasmon oscillation P = 0.5  (exp.)  Pump pulse polarization

Summary Band structure & optical properties of CNTs Photo-induced carrier dynamics Isolated SWNTs  ~ 1 ns Polarization memory Vertically aligned SWNTs  ~ 1 ps Polarization memory

E E1 DOS E2 H2 H1 Question ~ ns E2H2  E1H1 intraband transition E1H1 carrier recombination < 1 ps

Future work Nature of Transient Absorption Polarization Dependence Spin Injection

Acknowledgement Rice University Spectroscopy Kono group: Spectroscopy D. C. Larrabee, G. N. Ostojic, A. Srivastava, R. Srivastava, C. Sun, J. Wang, S. Zaric, D. V. Orden, C. Wong, X. Wang, G. A. Khodaparast, and J. Kono Sample growth (Isolated SWNTs) Smalley group: Sample growth (Isolated SWNTs) J. Shaver, V. C. Moore, R. H. Hauge, and R. E. Smalley Tokyo University Sample growth (Vertically aligned SWNTs) Maruyama group: Sample growth (Vertically aligned SWNTs) Y. Murakami and S. Maruyama