The star formation history of the Fornax dSph galaxy using the new synthetic CMD code IAC-STAR C. Gallart & A. Aparicio (IAC) R. Zinn (U. Yale) F. Pont.

Slides:



Advertisements
Similar presentations
Comparing RAVE with theoretical models of the Milky Way Sanjib Sharma Joss Bland Hawthorn University of Sydney.
Advertisements

Recent Star Formation Histories of Dwarf Galaxies Evan Skillman – U. Minnesota Gas Accretion and Star Formation in Galaxies - Munich – 
Gas-rich and gas-poor dwarf galaxies:
1 Low luminosity observations: a test for the Galactic models Degl’Innocenti S. 1, Cignoni M. 1, Castellani V. 2, Petroni S. 1, Prada Moroni P.G. 1 1 Physics.
Deep HST Imaging of M33: the Star Formation History
Improving mass and age estimates of unresolved stellar clusters Margaret Hanson & Bogdan Popescu Department of Physics.
The Cozumel Experiment: Recovery of Star Formation Histories of Simulated Data Sets Jon Holtzman (NMSU) contributors: Andy Dolphin, Jason Harris, David.
Small Magellanic Cloud: Reaching The Outer Edge? Noelia E. D. Noël Noël & Gallart 2007, ApJL, 665, 23 Breaking News, IAC, 18 de diciembre 2007.
Probing the evolution of stellar systems Andreas Zezas Harvard-Smithsonian Center for Astrophysics.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Constraining Astronomical Populations with Truncated Data Sets Brandon C. Kelly (CfA, Hubble Fellow, 6/11/2015Brandon C. Kelly,
Variable Stars: Pulsation, Evolution and applications to Cosmology Shashi M. Kanbur SUNY Oswego, June 2007.
Bell, E. F et al “Nearly 5000 distant Early-type galaxies in COMBO-17: A Red Sequence and its evolution since z~1” Presented by: Robert Lindner (Bob)‏
The Complex Star Formation History of NGC 1569 L. Angeretti 1, M. Tosi 2, L. Greggio 3, E. Sabbi 1, A. Aloisi 4, C. Leitherer 4 The object The observations.
Patrik Jonsson, UCSC In collaboration with TJ Cox, Joel Primack, Jennifer Lotz, Sandy Faber… Simulations of dust in interacting galaxies.
A New Technique to Measure ΔY/ΔZ A. A. R. Valcarce (UFRN) Main collaborators: J. R. de Medeiros (UFRN)M. Catelan (PUC) XXXVII SAB meeting Águas de Lindóia,
Resolved Stellar Populations outside the Local Group Alessandra Aloisi (STScI/ESA) Science with the New HST after SM4 Bologna – 30 January 2008.
The Stellar Populations of Galaxies H.-W. Rix IMPRS Galaxies Course March 11, 2011 Goal: Determine n * (M *,t age,[Fe/H],R) for a population of galaxies.
The potential of JWST to Measure the Mass- Loss Return from Stars to Galaxies Acknowledgements: Funding from NASA-ADAP, Herschel/HERITAGE, and NAG5 grants.
Giuseppina Battaglia Chemo-dynamics of galaxies from resolved stellar population studies in the surroundings of the Milky Way and beyond Fellow Symposium.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
The white dwarf cooling age of NGC 6791 Enrique García-Berro, Santiago Torres, Leandro Althaus, Isabel Renedo, Pablo Lorén-Aguilar, Alejandro.
The Gas Properties of Galaxies on and off of a Star-Forming Sequence David Schiminovich + GALEX Science Team Columbia University.
A study of the ages of Large Magellanic Cloud star clusters Randa Asa’d University of Cincinnati Adviser: Dr. Margaret Hanson Bucuresti 23 Septembrie 2010.
Galactic Helium-to-Metals enrichment ratio from the analysis of local main sequence stars observed by HIPPARCOS 52° Congresso SAIt – Teramo 2008 * Università.
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
1 Lessons from cosmic history Star formation laws and their role in galaxy evolution R. Feldmann UC Berkeley see Feldmann 2013, arXiv:
A multi-colour survey of NGC253 with XMM-Newton Robin Barnard, Lindsey Shaw Greening & Ulrich Kolb The Open University.
1 VVDS: Towards a complete census of star formation at 1.4
Martin et al. Goal-determine the evolution of the IRX and extinction and relate to evolution of star formation rate as a function of stellar mass.
Comprehensive Stellar Population Models and the Disentanglement of Age and Metallicity Effects Guy Worthey 1994, ApJS, 95, 107.
Advanced Stellar Populations Advanced Stellar Populations Raul Jimenez
High mass X-ray binaries and recent star formation in the host galaxy P.Shtykovskiy, M.Gilfanov IKI, Moscow; MPA, Garching.
New planetary nebulae from IPHAS Romano L.M. Corradi 1,2 Antonio Mampaso 2 & Kerttu Viironen 2 1 Isaac Newton Group of Telescopes, La Palma 2 Instituto.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Data Reduction with NIRI Knut Olsen and Andrew Stephens Gemini Data Workshop Tucson, AZ July 21, 2010 Knut Olsen and Andrew Stephens Gemini Data Workshop.
New and Odds on Globular Cluster Stellar Populations: an Observational Point of View (The Snapshot Database) G.Piotto, I. King, S. Djorgovski and G. Bono,
Critical Steps in Population Synthesis Alessandro Bressan MAGPOP Summer School - Budapest, Hungary, August
Spectroscopy of Planetary Nebulae in Sextans A and Sextans B Laura Magrini (1), Mario Perinotto (1), Pierre Leisy (2, 3), Romano L.M. Corradi (2), Antonio.
The Cozumel Experiment: Recovery of Star Formation Histories of Simulated Data Sets Jon Holtzman (NMSU) contributors: Andy Dolphin, Jason Harris, David.
Is the Initial Mass Function universal? Morten Andersen, M. R. Meyer, J. Greissl, B. D. Oppenheimer, M. Kenworthy, D. McCarthy Steward Observatory, University.
A CDM view of the Local Group dSphs Jorge Peñarrubia In collaboration with Julio F. Navarro & Alan McConnachie Jorge Peñarrubia In collaboration with Julio.
The White Dwarf Age of NGC 2477 Elizabeth Jeffery Space Telescope Science Institute Collaborators: Ted von Hippel, Steven DeGennaro, David van Dyk, Nathan.
Chapter 3 Stars: Radiation  Nick Devereux 2006 Revised 2007.
Lecture 18 Stellar populations. Stellar clusters Open clusters: contain stars loose structure Globular clusters: million stars centrally.
Globular Cluster - Dwarf Galaxy Connection W1: a case study in our neighborhood Ann Arbor, Aug Beth Willman W1 DEIMOS Observations M.Geha (HIA/Yale)
Hi. My name is Alexia Lewis
Star Formation Histories of Nearby Galaxies from Resolved Stellar Populations: What have we learned? Collaborators: J. Dalcanton, D. Weisz, B. Williams,
Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)
Blue stragglers in dwarf spheroidal galaxies L.Rizzi Osservatorio Astronomico di Padova In collaboration with: Enrico V. Held, Giampaolo Bertelli, Ivo.
Miguel CerviñoESAC 23 March 2007 How to use the SEDs produced by synthesis models? Miguel Cerviño (IAA-CSIC/SVO) Valentina Luridiana (IAA-CSIC/SVO)
Claudia Maraston Institute of Cosmology and Gravitation University of Portsmouth - UK Stellar Population Models Interpreting observations Colouring simulations.
Galaxy formation and evolution with a GSMT: The z=0 fossil record 17 March, 2003.
Investigating the Low- Mass Stellar Initial Mass Function in Draco Soroush Sotoudeh (University of Minnesota) Daniel Weisz, Andrew Dolphin, Evan Skillman.
Stellar populations and their kinematics from high and medium resolution spectra: mixed inversions P. Ocvirk, A. Lançon, C. Pichon, Observatoire de Strasbourg.
Lightcones for Munich Galaxies Bruno Henriques. Outline 1. Model to data - stellar populations and photometry 2. Model to data - from snapshots to lightcones.
The LCID Project (Local Cosmology from Isolated Dwarfs) A Brief Overview by Evan Skillman Prepared for the Michigan Workshop: “Extreme Star Formation in.
Recent Star Formation Histories of Dwarf Galaxies
Comparison of different codes Patricia Sanchez-Blazquez
Instituto de Astrofìsica de Canarias
Are WE CORRECTLY Measuring the Star formation in galaxies?
From: The evolution of star formation activity in galaxy groups
Spectroscopy surveys of stellar populations
The History of the Baryon Budget Yann Rasera Supervisor: Romain Teyssier and Jean-Pierre Chièze Horizon Project Cosmological simulations Analytical model.
Patricia Sánchez-Blázquez And the CALIFA collaboration
Statistics of Visual Binaries and Star Formation History
Chapter 10 Star Cluster.
On the
Galactic Astronomy 銀河物理学特論 I Lecture 3-3: Stellar mass function of galaxies Seminar: Perez-Gonzalez et al. 2008, ApJ, 675, 234 Lecture: 2012/01/16.
Modeling Star Formation and Chemical Evolution in the Local Group dwarfs Oleg Gnedin University of Michigan.
Presentation transcript:

The star formation history of the Fornax dSph galaxy using the new synthetic CMD code IAC-STAR C. Gallart & A. Aparicio (IAC) R. Zinn (U. Yale) F. Pont (Obs. Genève) E. Hardy (NRAO) R. Buonanno & G. Marconi (Obs. Rome)

CMD studies by Stetson et al Buonanno et al Saviane et al Gallart et al Fornax dSph M T = 7.0x10 7 M sun L V = 1.5 x10 7 L sun dist = 140 Kpc R C = 0.5 Kpc

VLT FORS1 image compared to WFPC2 VLT FORS1 data, 6.8 arcmin 1850 sec V 4600 sec I seeing  0.6” Gallart et al. 2003, in prep

The Fornax VLT CMDs

Computing a synthetic CMD Ingredients Computing method m  IMF Montecarlo Interpolation in the stellar evolution models Bolometric corrections Age, metallicity and mass Luminosity and temperature Magnitudes and colors t  t CEL Z q  Binaries SFR

Antonio Aparicio Antonio Aparicio Carme Gallart Carme Gallart Sebastian Hidalgo Sebastian Hidalgo Instituto de Astrofísica de Canarias

IAC-STAR is offered by the Stellar Populations in Galaxies research group at La Laguna, Canary Island, Spain (Instituto de Astrofísica de Canarias and University of La Laguna).Instituto de Astrofísica de Canarias This web page and the facility is maintained by the Servicios Informáticos del IAC Servicios Informáticos IAC-STAR SYNTHETIC COLOR-MAGNITUDE DIAGRAM COMPUTATION ALGORITHM Run IAC-STARun IAC-STAR General Information Retrieve paper by Aparicio & Gallart (2003) Feedback and contacting IAC-STAR Acknowledging using IAC-STAR Instituto de Astrofísica de Canarias C/ Vía Láctea s/n, tfno.: , fax:

IAC-STAR: star formation rate

7, 0, 3, 3, 6, 6, 9, 12, 0, 0, 2, 2, 1, 1, 3

IAC-STAR: metallicity law

IAC-STAR Stellar Evolution: (Bertelli et al. 1994) Very low masses: (Brocato et al. 1998) TP-AGB extrapolation (Marigo et al. 1998) Bolometric Corrections: Lejeune et al. 1997

IAC-STAR OUTPUT Run limits: max saved stars, max computed stars, control filter [0,11] -> (logL)UBVRIJHKL(L)M, min log(L) or max mag saved: Age range: 0.100E E+11 SFR law normalyzed to its total integral Normalized time: E E E E+01 Normalized time: E E E E+01 Lower metallicity law: Z_0, Z_f, mu_f, alfa, lambda: E E E E E+00 Upper metallicity law: Z_0, Z_f, mu_f, alfa, lambda: E E E E E+00 Effective yields for lower and upper laws: E E+00 Binaries: fraction number and minimal mass ratio: File heading: log(L), log(Teff), log(g), mass_ini, mass_fin, idem for the secondary; age, Z, mass_2/mass_1, Mbol, U, B, V, R, I, J, H, K, L, L`, M See file bottom for integrated quantities E

Total star numbers: Total masses and luminosities: Int(SFR), mass in now alive stars, mass in remnants, Sum[log(L)], sum[log(L**2)] Integrated magnitudes: bolometric and in the used filters Integrated magnitudes: bolometric and in the used filters, obtained from squared luminosities (SBF) E E E E E E E E E E …… ……. IAC-STAR

GOING BACK TO THE FORNAX STAR FORMATION HISTORY: Work in progress…

Starting point: Create synthetic CMDs with  CMD with constant SFR: 13 to 0 Gyr  A number of test Z(t)  Binary fractions: f=0.1, 0.3, 0.6, 0.9; q=0.6  3 IMFs: Kroupa et al. + steeper & shallower  +/- 0.1 in distance modulus and simulate observational errors on them Z(t)

Tests with known star formation histories z9b25fkr

The comparison allows us to discard a number of Z(t)

Coleman, da Costa, Bland- Hawthorn, Martinez-Delgado, Freeman & Malin : Shell structure in the Fornax dSph galaxy, AJ, sub

VLT FORS1 Spectra of Fornax dSph, Pont et al. 2003, AJ,in press I < min 0.8” seeing 1.06 Å/pix  120 stars

VLT FORS1 Spectra of Fornax dSph, Pont et al. 2003, AJ, in press I < min 0.8” seeing 1.06 Å/pix  120 stars

Solving the SFH  Metallicity  Except for very simple cases, the metallicity law should be a function to be determined.  Ideally, it should be a free function to be derived together with the SFR (Cole et al. 1999; Holtzman et al. 1999; Harris & Zaritsky 2001)  At least (including less accurate data), Z(t) can be reasonably constrained - Current metallicity may be estimated from spectroscopy of HII regions - It must be compatible with the position of relevant evolutionary phases (RGB, RSG, MS) in the CMD - Z(t) may be assumed to be an increasing function of t

Solving the SFH  Crowding + real (external) errors  Crowding should be characterized for each observational data set  Internal (e.g. ALLSTAR’s) errors may not be good representation of real (external errors)  Detailed characterization of crowding from extensive artificial star test is a best choice (Aparicio et al. 1996)

Solving the SFH: parameterizing Aparicio et al. (1997) Dolphin (1997) Gallart et al. (1999) Cole (1999) Holtzman et al. (1999) Harris & Zaritsky (2001) (“partial” model)

The color-magnitude diagram  Color-magnitude diagram (CMD): best tool to obtain the SFH Shortcomings: Good CMDs can only be obtained for nearby galaxies Local Group and vicinity Advantages: Information on stars of all ages Best case: CMDs reaching oldest main-sequence turnoffs

Solving the SFH: parameterizing Partial model: Observations:

Solving the SFH: parameterizing 0.5<t<0.6 Gyr Z=0.006 binaries: 25%

Solving the SFH: parameterizing 0.5<t<0.6 Gyr Z=0.006 binaries: 25%

 Fits based on stars counts in a blind (uniform) grid or on point-to-point fits may be biased by stellar evolution models artifacts (in poorly understood phases) or uncontroled observational errors.  CMD fits based on stars counts in an “intelligently chosen” grid in the CMD may be biased by the choice of the grid. Some criticism: problems and limitations

Solving the SFH  Ingredients Data Deep CMD of the galaxy Stellar evolution theory Computing synthetic CMDs for any SFH SFH Method for comparison of CMDs