CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3: Search, A*

Slides:



Advertisements
Similar presentations
BEST FIRST SEARCH - BeFS
Advertisements

Lecture Notes on AI-NN Chapter 5 Information Processing & Utilization.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2 - Search.
CS344: Principles of Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 7, 8, 9: Monotonicity 16, 17 and 19 th Jan, 2012.
Greedy best-first search Use the heuristic function to rank the nodes Search strategy –Expand node with lowest h-value Greedily trying to find the least-cost.
Solving Problem by Searching
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture– 4, 5, 6: A* properties 9 th,10 th and 12 th January,
Artificial Intelligence Chapter 9 Heuristic Search Biointelligence Lab School of Computer Sci. & Eng. Seoul National University.
October 1, 2012Introduction to Artificial Intelligence Lecture 8: Search in State Spaces II 1 A General Backtracking Algorithm Let us say that we can formulate.
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16, 17- Completeness Proof; Self References and.
State Space Search Algorithms CSE 472 Introduction to Artificial Intelligence Autumn 2003.
Review: Search problem formulation
Lecture 3 Informed Search CSE 573 Artificial Intelligence I Henry Kautz Fall 2001.
Problem Solving and Search in AI Heuristic Search
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–2,3: A* 3 rd and 5 th January, 2012.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 13– Search.
State-Space Searches.
Informed Search Idea: be smart about what paths to try.
Review: Search problem formulation Initial state Actions Transition model Goal state (or goal test) Path cost What is the optimal solution? What is the.
3.0 State Space Representation of Problems 3.1 Graphs 3.2 Formulating Search Problems 3.3 The 8-Puzzle as an example 3.4 State Space Representation using.
Informed Search Strategies
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 - Introduction.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Monotonicity 13 th Jan, 2011.
Chapter 4 Search in State Spaces Xiu-jun GONG (Ph. D) School of Computer Science and Technology, Tianjin University
CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 15/Jan/2007.
State-Space Searches. 2 State spaces A state space consists of A (possibly infinite) set of states The start state represents the initial problem Each.
CS.462 Artificial Intelligence SOMCHAI THANGSATHITYANGKUL Lecture 02 : Search.
Informed Search Strategies Lecture # 8 & 9. Outline 2 Best-first search Greedy best-first search A * search Heuristics.
For Friday Finish reading chapter 4 Homework: –Lisp handout 4.
For Monday Read chapter 4, section 1 No homework..
CS344: Introduction to Artificial Intelligence (associated lab: CS386)
Review: Tree search Initialize the frontier using the starting state While the frontier is not empty – Choose a frontier node to expand according to search.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search.
Search (continued) CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Power of Heuristic; non- conventional search.
Informed Search CSE 473 University of Washington.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2 - Search.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 - Introduction.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 13– Search 17 th August, 2010.
0 The animation which I am proposing here will be a 2D animation and can be developed in JAVA or Flash.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 17– Theorems in A* (admissibility, Better performance.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lectures 18, 19, 20– A* Monotonicity 2 nd, 6 th and 7 th September, 2010.
CS344: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 to 8– Introduction, Search, A* (has the associated lab course: CS386)
February 18, 2016Introduction to Artificial Intelligence Lecture 8: Search in State Spaces III 1 A General Backtracking Algorithm Sanity check function.
Solving problems by searching Uninformed search algorithms Discussion Class CS 171 Friday, October, 2nd (Please read lecture topic material before and.
For Monday Read chapter 4 exercise 1 No homework.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Discussion on Greedy Search and A*
Discussion on Greedy Search and A*
Dijkstra’s Algorithm Run by hand Dijkstra's Algorithm (as stated in slide 68 at on the example.
CS 4100 Artificial Intelligence
CS621: Artificial Intelligence
CS621: Artificial Intelligence
Artificial Intelligence Chapter 9 Heuristic Search
A General Backtracking Algorithm
HW 1: Warmup Missionaries and Cannibals
Artificial Intelligence
Informed Search Idea: be smart about what paths to try.
State-Space Searches.
State-Space Searches.
HW 1: Warmup Missionaries and Cannibals
CS621 : Artificial Intelligence
CS621: Artificial Intelligence
State-Space Searches.
Informed Search Idea: be smart about what paths to try.
Supplemental slides for CSE 327 Prof. Jeff Heflin
Presentation transcript:

CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3: Search, A*

Algorithmics of Search

General Graph search Algorithm S AACB F ED G Graph G = (V,E) A C B DE F G

1) Open List : S (Ø, 0) Closed list : Ø 2) OL : A (S,1), B (S,3), C (S,10) CL : S 3) OL : B (S,3), C (S,10), D (A,6) CL : S, A 4) OL : C (S,10), D (A,6), E (B,7) CL: S, A, B 5) OL : D (A,6), E (B,7) CL : S, A, B, C 6) OL : E (B,7), F (D,8), G (D, 9) CL : S, A, B, C, D 7) OL : F (D,8), G (D,9) CL : S, A, B, C, D, E 8) OL : G (D,9) CL : S, A, B, C, D, E, F 9) OL : Ø CL : S, A, B, C, D, E, F, G

Steps of GGS (principles of AI, Nilsson,) 1. Create a search graph G, consisting solely of the start node S; put S on a list called OPEN. 2. Create a list called CLOSED that is initially empty. 3. Loop: if OPEN is empty, exit with failure. 4. Select the first node on OPEN, remove from OPEN and put on CLOSED, call this node n. 5. if n is the goal node, exit with the solution obtained by tracing a path along the pointers from n to s in G. (ointers are established in step 7). 6. Expand node n, generating the set M of its successors that are not ancestors of n. Install these memes of M as successors of n in G.

GGS steps (contd.) 7. Establish a pointer to n from those members of M that were not already in G (i.e., not already on either OPEN or CLOSED). Add these members of M to OPEN. For each member of M that was already on OPEN or CLOSED, decide whether or not to redirect its pointer to n. For each member of M already on CLOSED, decide for each of its descendents in G whether or not to redirect its pointer. 8. Reorder the list OPEN using some strategy. 9. Go LOOP.

GGS is a general umbrella S n1n1 n2n2 g C(n 1,n 2 ) h(n 2 ) h(n 1 ) OL is a queue (BFS) OL is stack (DFS) OL is accessed by using a functions f= g+h (Algorithm A)

Algorithm A A function f is maintained with each node f(n) = g(n) + h(n), n is the node in the open list Node chosen for expansion is the one with least f value For BFS: h = 0, g = number of edges in the path to S For DFS: h = 0, g =

Algorithm A* One of the most important advances in AI g(n) = least cost path to n from S found so far h(n) <= h*(n) where h*(n) is the actual cost of optimal path to G(node to be found) from n S n G g(n) h(n) “ Optimism leads to optimality ”

Search building blocks  State Space : Graph of states (Express constraints and parameters of the problem)  Operators : Transformations applied to the states.  Start state : S 0 (Search starts from here)  Goal state : {G} - Search terminates here.  Cost : Effort involved in using an operator.  Optimal path : Least cost path

Examples Problem 1 : 8 – puzzle S0S0 2 G Tile movement represented as the movement of the blank space. Operators: L : Blank moves left R : Blank moves right U : Blank moves up D : Blank moves down C(L) = C(R) = C(U) = C(D) = 1

A*: Definitions and Properties

A* Algorithm – Definition and Properties f(n) = g(n) + h(n) The node with the least value of f is chosen from the OL. f*(n) = g*(n) + h*(n), where, g*(n) = actual cost of the optimal path (s, n) h*(n) = actual cost of optimal path (n, g) g(n) ≥ g*(n) By definition, h(n) ≤ h*(n) S s n goal State space graph G g(n) h(n)

8-puzzle: heuristics sng Example: 8 puzzle h*(n) = actual no. of moves to transform n to g 1.h 1 (n) = no. of tiles displaced from their destined position. 2.h 2 (n) = sum of Manhattan distances of tiles from their destined position. h 1 (n) ≤ h*(n) and h 1 (n) ≤ h*(n) h* h2h2 h1h1 Comparison