1 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Operational Implementation Strategies Moderator: Bryan Franz Topic 3.

Slides:



Advertisements
Similar presentations
GOME-2 polarisation data and products L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI GSAG #42, EUMETSAT,
Advertisements

Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Ocean Optics XXI, Glasgow, Scotland, October 8-12, 2012 David Antoine; André Morel Laboratoire d’Océanographie de Villefranche (LOV), CNRS and Université.
From UV to fluorescence, a semi-analytical ocean color model for MODIS and beyond Stéphane Maritorena & Dave Siegel Earth Research Institute University.
Satellite Ocean Color Overview Dave Siegel – UC Santa Barbara With help from Chuck McClain, Mike Behrenfeld, Bryan Franz, Jim Yoder, David Antoine, Gene.
Beyond Chlorophyll: Ocean color ESDRs and new products S. Maritorena, D. A. Siegel and T. Kostadinov Institute for Computational Earth System Science University.
Achieving Global Ocean Color Climate Data Records ASLO Aquatic Sciences Meeting 17 February 2011 – San Juan, Puerto Rico Bryan A. Franz and the NASA Ocean.
Characterization of radiance uncertainties for SeaWiFS and Modis-Aqua Introduction The spectral remote sensing reflectance is arguably the most important.
GlobColour CDR Meeting ESRIN July 2006 Merging Algorithm Sensitivity Analysis ACRI-ST/UoP.
PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux Comparison of ocean color atmospheric correction approaches for operational remote sensing of turbid, coastal.
IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, PJW NASA/SSAI IOP Algorithm OOXIX.
ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New.
The GSM merging model. Previous achievements and application to GlobCOLOUR Globcolour / Medspiration user consultation, Dec 4-6, 2006, Villefranche/mer.
Uncertainty estimates in input (Rrs) and output ocean color data: a brief review Stéphane Maritorena – ERI/UCSB.
Error bar estimates Estimates of the uncertainties on input LwN Estimates of the error model Estimates of the uncertainties on outputs Chla, bbp,cdm (Co-variance.
Atmospheric effect in the solar spectrum
NRL09/21/2004_Davis.1 GOES-R HES-CW Atmospheric Correction Curtiss O. Davis Code 7203 Naval Research Laboratory Washington, DC 20375
Menghua Wang NOAA/NESDIS/ORA E/RA3, Room 102, 5200 Auth Rd.
1 Calibration Adjustments for the MODIS Aqua 2015 Ocean Color Reprocessing Gerhard Meister, NASA Code 616 OBPG (Ocean Biology Processing Group) 5/18/2015.
Satellite Retrieval of Phytoplankton Community Size Structure in the Global Ocean Colleen Mouw University of Wisconsin-Madison In collaboration with Jim.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Introduction to ocean color satellite calibration NASA Ocean Biology Processing Group Goddard Space.
Rrs Modeling and BRDF Correction ZhongPing Lee 1, Bertrand Lubac 1, Deric Gray 2, Alan Weidemann 2, Ken Voss 3, Malik Chami 4 1 Northern Gulf Institute,
MODIS & VIIRS Ocean Science Team Break-out Report MODIS Science Team Meeting May 2015, Silver Spring, MD.
A Comparison of Particulate Organic Carbon (POC) from In situ and Satellite Ocean Color Data Off the Coast of Antarctica Amanda Hyde Antonio Mannino (advisor)
Ocean Color Observations and Their Applications to Climate Studies Alex Gilerson, Soe Hlaing, Ioannis Ioannou, Sam Ahmed Optical Remote Sensing Laboratory,
The IOCCG Atmospheric Correction Working Group Status Report The Eighth IOCCG Committee Meeting Department of Animal Biology and Genetics University.
Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Jeremy Werdell NASA.
Atmospheric Correction Algorithms for Remote Sensing of Open and Coastal Waters Zia Ahmad Ocean Biology Processing Group (OBPG) NASA- Goddard Space Flight.
1 Evaluating & generalizing ocean color inversion models that retrieve marine IOPs Ocean Optics Summer Course University of Maine July 2011.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
Retrieving Coastal Optical Properties from MERIS S. Ladner 1, P. Lyon 2, R. Arnone 2, R. Gould 2, T. Lawson 1, P. Martinolich 1 1) QinetiQ North America,
Recent advances for the inversion of the particulate backscattering coefficient at different wavelengths H. Loisel, C. Jamet, and D. Dessailly.
Satellite Ocean Color Products: What should be produced? ZhongPing Lee, Bryan Franz, Norman Kuring, Sean Baily raise questions, rather to provide definite.
Ocean Color Radiometer Measurements of Long Island Sound Coastal Observational platform (LISCO): Comparisons with Satellite Data & Assessments of Uncertainties.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
1 Applications of Remote Sensing: SeaWiFS and MODIS Ocean Color Outline  Physical principles behind the remote sensing of ocean color parameters  Satellite.
Lachlan McKinna & Jeremy Werdell Ocean Ecology Laboratory NASA Goddard Space Flight Center MODIS Science Team Meeting Silver Spring, Maryland 21 May 2015.
Formerly Lecture 12 now Lecture 10: Introduction to Remote Sensing and Atmospheric Correction* Collin Roesler 11 July 2007 *A 30 min summary of the highlights.
Remote Sensing Reflectance and Derived Ocean Color Products from MODIS to VIIRS MODIS Science Team Meeting May 2015, Silver Spring, MD Bryan Franz.
MODIS/Aqua Ocean Reprocessing Bryan Franz Ocean Biology Processing Group MODIS Science Team Meeting March 2005.
Goddard Space Flight Center Ocean Color Reprocessing Bryan Franz Ocean Biology Processing Group NASA Goddard Space Flight Center.
Definition and assessment of a regional Mediterranean Sea ocean colour algorithm for surface chlorophyll Gianluca Volpe National Oceanography Centre, Southampton.
MODIS & VIIRS Ocean Science Team Break-out MODIS Science Team Meeting May 2015, Silver Spring, MD.
Ocean Break-out Summary MODIS Science Team Meeting 9 May 2012 Bryan Franz and the MODIS Ocean Science Team.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
NASA SIMBIOS Experience International Collaboration OCRT Meeting 24 April 2012 Bryan Franz and the NASA Ocean Biology Processing Group.
GlobColour / Medspiration user consultations, Nov 20-22, 2007, Oslo Validation of the GlobColour Full product set ( FPS ) over open ocean Case 1 waters.
SNPP Ocean SIPS status SNPP Applications Workshop 18 November 2014 Bryan Franz and the Ocean Biology Processing Group.
IOP Algorithm Ocean Optics XIX, 7 Oct 2008, PJW NASA/SSAI IOP Algorithm OOXIX Jeremy Werdell NASA Ocean Biology Processing Group.
The role of Optical Water Type classification in the context of GIOP Timothy S. Moore University of New Hampshire, Durham NH Mark D. Dowell Joint Research.
In situ data in support of (atmospheric) ocean color satellite calibration & validation activities How are my data used? Part 2 Ocean Optics Class University.
Estimating the uncertainties in the products of inversion algorithms or, how do we set the error bars for our inversion results? Emmanuel Boss, U. of Maine.
ADPS Science Software Development Bryan Franz NASA Ocean Biology Processing Group Aquarius Data Processing Workshop, NASA/GSFC, March 2007.
A semi-analytical ocean color inherent optical property model: approach and application. Tim Smyth, Gerald Moore, Takafumi Hirata and Jim Aiken Plymouth.
IOP algorithm OOXX Jeremy Werdell & Bryan Franz NASA Ocean Biology Processing Group 25 Sep 2010, Anchorage, AK
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Polarization analysis in MODIS Gerhard Meister, Ewa Kwiatkowska, Bryan Franz, Chuck McClain Ocean Biology Processing Group 18 June 2008 Polarization Technology.
MODIS-Terra cross-calibration for ocean color bands Ewa Kwiatkowska Bryan Franz, Gerhard Meister, Gene Eplee OBPG 30 January 2008.
A class-based approach for mapping the uncertainty of empirical chlorophyll algorithms Timothy S. Moore University of New Hampshire NASA OCRT Meeting May.
Advances in the Processing and Retrieval of Ocean Color from MODIS and SeaWiFS MODIS Science Team Meeting January 2010 Bryan Franz and the Ocean Biology.
Some refinements for global IOPs products ZhongPing Lee IOPs Workshop, Anchorage, AK, Oct 25, 2010.
NASA OBPG Update OCRT Meeting 23 April 2012 Bryan Franz and the NASA Ocean Biology Processing Group.
MODIS Atmosphere Products: The Importance of Record Quality and Length in Quantifying Trends and Correlations S. Platnick 1, N. Amarasinghe 1,2, P. Hubanks.
“Regional” adjustments of SAA parameterization Mark Dowell & Timothy Moore EC-JRCNURC & UNH.
Some Practical Considerations for the GEO-CAPE Mission Sensitivity, Saturation, Sun glint, Cloud cover, etc Chuanmin Hu, Zhongping Lee, Keping Du, Antonio.
VIIRS-derived Chlorophyll-a using the Ocean Color Index method SeungHyun Son 1,2 and Menghua Wang 1 1 NOAA/NESDIS/STAR, E/RA3, College Park, MD, USA 2.
The ROLO Lunar Calibration System Description and Current Status
Jian Wang, Ph.D IMCS Rutgers University
Wei Yang Center for Environmental Remote Sensing
Presentation transcript:

1 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Operational Implementation Strategies Moderator: Bryan Franz Topic 3

2 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Goals  Identification of issues unique to satellite retrieval of IOPs  Understanding of satellite R rs generation  Agreement on common IOP model inputs (a w & b bw )  Agreement on algorithm failure conditions & masking  Understanding impact of IOP inversion at L2 versus L3

3 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Satellite Focus  Multiple sensors - varying wavelength sets  SeaWIFS, MODIS, MERIS --> OCM-2, VIIRS, OLCI  Multiple data processing systems (NASA, ESA, ISRO)  Global application  wide range of water classes, distribution dominated by low-C a water  large data volumes, want best IOP algorithm that is “practical”  Imperfect L w retrieval  satellite sensor calibration & noise  atmospheric correction error  R rs normalization  wide range of viewing geometry (0 <  v < 60)  transition through interface

4 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Multi-Sensor Processing Framework Level-1 to Level-2 (common algorithms) SeaWiFS L1A - or - MODISA L1B MODIST L1B OCTS L1A MOS L1B OSMI L1A CZCS L1A MERIS L1B OCM L1B Level-2 to Level-3 Level-2 File Level-3 Global Product observed radiances AOPs R rs ( ) IOPs a( ), b b ( ) Level-2 File atmospheric correction L w normalization derived products flags (failure & quality) observed L t ( ) ,  0,  spatial averaging temporal averaging masking

5 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG R rs from Satellite Radiances t d ( ) L w ( ) = L t ( ) / t g ( ) / f p ( ) - TL g ( ) - tL f ( ) - L r ( ) - L a ( ) TOAgaspolglintwhitecapairaerosol nL w ( ) = L w ( ) / t d0 ( )  0 f 0 Sun full-band water-leaving radiance normalized to non-attenuating atmosphere with Sun overhead fb nL w ( ) = nL w ( ) f fb correct from full-band to nominal 10-nm center-band via Morel model nL w ( ) = nL w ( ) ex correct for Fresnel reflection refraction and inhomogeneity of subsurface light field via LUT  0 (f/Q) 0  (f/Q) R rs ( ) = nL w ( ) / F 0 ( ) ex solar irradiance from Thuillier nm square-band-pass average

6 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG IOP Model Implementation Issues  transition across air/sea interface  Lee et al  pure sea-water values (a w & b bw )  a w : Pope & Fry, Kou et al. 1993, b bw : Smith & Baker 1981  10-nm square band-pass average (consistent with R rs retrieval)  salinity & temperature sensitivity  significant impact on IOP retrieval when a w & b bw = f(T,S)  need to identify ancillary data sources

7 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Inversion Methods and Efficiency  sequential (class 1 & 3)  model-specific (wavelength-specific)  may be iterative  simultaneous (class 2)  Matrix inversion – Lower-Upper Decomposition (LUD) – Singular-Valued Decomposition (SVD)  Iterative cost-function minimization – Levenburg-Marquart (LM) – Downhill Simplex (Amoeba, AMB) None38 QAA39 GSM SVD42 GSM LM55 GSM AMB98 AlgorithmTime (secs) one SeaWIFS GAC orbit

8 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG IOP Models Implemented at NASA  GSM (Garver-Siegel-Maritorena)  a, a ph, a dg, b b, b bp, C a  QAA (Quasi-Analytical Algorithm)  a, a ph, a dg, b b, b bp  LAS (Loisel and Stramski)  a, b, c, b b, b bp  PML (Plymouth Marine Labs)  a, a ph, a dg, b b, b bp  HAL (Hoge & Lyon, via GIOP)  a, a ph, a dg, b b, b bp  GIOP (Generalized IOP Model)  a, a ph, a dg, b b, b bp, C a, flags, , S TBD:  NIWA  Boss & Roesler

9 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Generalized IOP Model (GIOP)  specify sensor wavelengths to fit  e.g., 412,443,490,510,555  e.g., 412,490,555  select a ph form and set params  tabulated:, a p *( )  gaussian: ,   select a dg form and set params  exponential: , S  select b bp form and set params  power law: ,   power law: ,  via Hoge & Lyon  power law: ,  via QAA  select Rrs[0-] to bb/(a+bb)  quadratic: g1, g2  f/Q: (tbd)  specify inversion method  Levenburg-Marquart  Amoeba (downhill simplex)  Lower-Upper Decomposition  Singular-Value Decomposition  specify output products  a ( ), a ph ( ), a dg ( ), b b ( ), b bp ( )  = any sensor wavelength(s)  C a (given a p * at  )   (dynamic model params)  internal flags

10 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG  specify sensor wavelengths to fit  e.g., 412,443,490,510,555  e.g., 412,490,555  select a ph form and set params  tabulated:, a p *( )  gaussian: ,   select a dg form and set params  exponential: , S  select b bp form and set params  power law: ,   power law: ,  via Hoge & Lyon  power law: ,  via QAA Generalized IOP Model (GIOP)  select Rrs[0-] to bb/(a+bb)  quadtratic: g1, g2  f/Q: (tbd)  specify inversion method  Levenburg-Marquart  Amoeba (downhill simplex)  Lower-Upper Decomposition  Singular-Value Decomposition  specify output products  a ( ), a ph ( ), a dg ( ), b b ( ), b bp ( )  = any sensor wavelength(s)  C a (given a p * at  )   (dynamic model params)  internal flags 5-Band GSM

11 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG  specify sensor wavelengths to fit  e.g., 412,443,490,510,555  e.g., 412,490,555  select a ph form and set params  tabulated:, a p *( )  gaussian: ,   select a dg form and set params  exponential: , S  select b bp form and set params  power law: ,   power law: ,  via Hoge & Lyon  power law: ,  via QAA Generalized IOP Model (GIOP)  select Rrs[0-] to bb/(a+bb)  quadratic: g1, g2  f/Q: (tbd)  specify inversion method  Levenburg-Marquart  Amoeba (downhill simplex)  Lower-Upper Decomposition  Singular-Value Decomposition  specify output products  a ( ), a ph ( ), a dg ( ), b b ( ), b bp ( )  = any sensor wavelength(s)  C a (given a p * at  )   (dynamic model params)  internal flags Hoge & Lyon

12 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Flags & Masks

13 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Multi-Sensor Processing Framework Level-1 to Level-2 (common algorithms) SeaWiFS L1A - or - MODISA L1B MODIST L1B OCTS L1A MOS L1B OSMI L1A CZCS L1A MERIS L1B OCM L1B Level-2 to Level-3 Level-2 File Level-3 Global Product observed radiances AOPs R rs ( ) IOPs a( ), b b ( ) Level-2 File atmospheric correction L w normalization derived products flags (failure & quality) observed L t ( ) ,  0,  spatial averaging temporal averaging masking

14 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Level-2 Flags & Level-3 Masking BITNAMEDESCRIPTION 01ATMFAILAtmospheric correction failure 02LANDPixel is over land 03BADANCReduced quality of ancillary data 04HIGLINTHigh sun glint 05HILTObserved radiance very high or saturated 06HISATZENHigh sensor view zenith angle 07COASTZPixel is in shallow water 08NEGLWNegative water-leaving radiance retrieved 09STRAYLIGHTStraylight contamination is likely 10CLDICEProbable cloud or ice contamination 11COCCOLITHCoccolithophores detected 12TURBIDWTurbid water detected 13HISOLZENHigh solar zenith 14HITAUHigh aerosol optical thickness 15LOWLW Very low water-leaving radiance (cloud shadow) 16CHLFAILDerived product algorithm failure BITNAMEDESCRIPTION 17NAVWARNNavigation quality is reduced 18ABSAERpossible absorbing aerosol 19TRICHOPossible trichodesmium contamination 20MAXAERITERAerosol iterations exceeded max 21MODGLINTModerate sun glint contamination 22CHLWARNDerived product quality is reduced 23ATMWARNAtmospheric correction is suspect 24DARKPIXELRayleigh-subtracted radiance is negative 25SEAICEPossible sea ice contamination 26NAVFAILBad navigation 27FILTERPixel rejected by user-defined filter 28SSTWARNSST quality is reduced 29SSTFAILSST quality is bad 30HIPOLHigh degree of polarization 31PRODFAILDerived product failure 32OCEANNot cloud or land Level-2 flags used as masks in Level-3 processing

15 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Proposed Conditions for IOP Product Failure  R rs < 0 in any required band?  not required for R rs ( ) minimization  required for matrix inversion (no positive roots in Gordon quad.)  required for band ratio component algorithms (e.g., QAA, HAL)  Failure within model computation  e.g., inputs out of range of LUTs, divide by zero errors  Tests on IOP retrievals (for 400 < < 600) 0.95 a w ( ) < a( ) < a w ( ) < a ph ( ) < a w ( ) < a dg ( ) < b bw ( ) < b b ( ) < b bw ( ) < b bp ( ) <0.015 initial proposal employed in some of our global analyses for this workshop or R rs < -  ( )

16 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG L2 vs L3 Inversion

17 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG IOP Inversion at Level-2 Level-1 to Level-2 (common algorithms) SeaWiFS L1A - or - MODISA L1B MODIST L1B OCTS L1A MOS L1B OSMI L1A CZCS L1A MERIS L1B OCM L1B Level-2 to Level-3 Level-2 File Level-3 Global Product observed radiances AOPs R rs ( ) IOPs a( ), b b ( ) Level-2 File atmospheric correction L w normalization derived products flags (failure & quality) observed L t ( ) ,  0,  Standard NASA Approach

18 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG IOP Inversion at Level-3 Level-1 to Level-2 (common algorithms) SeaWiFS L1A - or - MODISA L1B MODIST L1B OCTS L1A MOS L1B OSMI L1A CZCS L1A MERIS L1B OCM L1B Level-2 to Level-3 Level-2 File Level-3 Global Product observed L t ( ) ,  0,  AOPs R rs ( ) Level-2 File atmospheric correction L w normalization derived products flags (failure & quality) Level-3 Global Product IOPs a( ), b b ( ) averaged R rs ( ) ,  0,  Alternative Approach

19 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG L2 vs L3 Inversion: GSM Model

20 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG L2 vs L3 Inversion: GSM Model b b ( ) < mask GSM: Largest differences in eutrophic b b.

21 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG L2 vs L3 Inversion: QAA Model QAA: Largest differences in eutrophic a (band ratio algorithm, mean of ratio not same as ratio of means).

22 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG L2 vs L3 Inversion: PML Model PML: differences everywhere (f/Q from mean geometry) Oligotrophic Mesotrophic Eutrophic a(443) b b (443)

23 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Model-to-Model Differences Oligotrophic Mesotrophic Eutrophic a(443) b b (443)

24 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG My View  I like simultaneous solutions (class-1)  take advantage of full spectral suite, readily adapted to multiple sensors, easy to incorporate new ideas or alternative basis functions.  I prefer R rs minimization to matrix inversion  can handle negative R rs (small R rs +/- noise)  seems less sensitive to noise (perhaps a weighting issue)  Efficiency in algorithm/inversion selection is not a primary concern  satellite data processing is i/o intensive (exception Boss & Roesler)  Inversion at Level-3 vs Level-2 is not a primary concern  differences between popular models are much greater  Mask all IOP products at Level-3 if:  any one product exceeds valid (TBD) range

25 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Discuss...

26 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Goals  Identification of issues unique to satellite retrieval of IOPs  Understanding of satellite R rs generation  Agreement on common IOP model inputs (a w & b bw )  Agreement on algorithm failure conditions & masking  Understanding impact of IOP inversion at L2 versus L3

27 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

28 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Inversion Method

29 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Inversion Methods  sequential  model-specific  may be iterative  simultaneous  Iterative cost-function minimization – Levenburg-Marquart (LM) – Downhill Simplex (Amoeba, AMB)  Matrix inversion – Lower-Upper Decomposition (LUD) – Singular-Valued Decomposition (SVD) A x = b

30 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG R rs Minimization vs Matrix Inversion a(443), 6-Band GSM Model, LM Fit a(443), 5-Band GSM Model, LM Fit a(443), 6-Band GSM Model, SVD Fit a(443), 5-Band GSM Model, SVD Fit 5-Band = 412,443,490,510,555 6-Band = 5-Band a(443)

31 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Matrix Inversion: Linearization Issue R rs [0-] = g1 u + g2 u 2 where u  b b /(a+b b ) where v = 1 - 1/u a ph ( ) + a dg (  + v b bp ( ) = -[a w ( ) + v b bw ( )] u a ph ( ) + u a dg (  + (u-1) b bp ( ) = -[u a w ( ) + (u-1) b bw ( )] a = -v b b u a = (1 - u) b b 1) Traditional Approach: System of Equations Proportional to 1/Rrs 2) Alternate Approach: System of Equations Proportional to Rrs R rs [0-] =  f/Q u - or -

32 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Alternate Linearization Improves Inversion Consistency Linearization Method 2 a(443) GSM 6-Band Linearization Method 1 LM SVD a(443) Global b b (443) Global a(443) Global b b (443) Global LM SVD LM SVD

33 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Matrix Inversion Still Missing Highs in a & b b SVD Amoeba Eutrophic Waters, 5-Band GSM LM vs SVD NOMAD a ph (443) a(443) b b (443) 6-Band 3-Band 5-Band 4-Band

34 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Uncertainties

35 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Standard Deviation of R rs Distribution SeaWiFS March reflectance units

36 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Misc

37 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Trophic Subsets Deep-Water (Depth > 1000m)Oligotrophic (Chlorophyll < 0.1) Mesotrophic (0.1 < Chlorophyll < 1) Eutrophic (1 < Chlorophyll < 10)

38 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Salinity

39 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG ap* I used the Bricaud function to compute aph* for 25 chl concentrations between 0.05 and 3 (evenly distributed in log space), then computed the average spectra and spit out the 10nm wide aph* values for SeaWiFS wavelengths: In the attached plot, the average aph* spectra is the white line, the 10nm (wvl-5 <= wvl < wvl+5) version is in blue, and GSM is in red.

40 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Model Differences: Global View

41 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG QAA vs 6-Band GSM: a(443) & a(555) Oligotrophic Mesotrophic Eutrophic GSM QAA 1.05 a w

42 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG QAA - GSM: a(443) & a(555) Oligotrophic Mesotrophic Eutrophic

43 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG QAA vs 6-Band GSM: bb(443) & bb(555) Oligotrophic Mesotrophic Eutrophic GSM QAA GSM QAA

44 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG QAA - GSM: bb(443) & bb(555) Oligotrophic Mesotrophic Eutrophic