Fast Reconnection in High-Lundquist- Number Plasmas Due to Secondary Tearing Instabilities A.Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers Center.

Slides:



Advertisements
Similar presentations
Plans for Magnetic Reconnection Research Masaaki Yamada Ellen Zweibel for Magnetic Reconnection Working group CMSO Planning Meeting at U. Chicago November.
Advertisements

Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Pulsar radio wave dispersion, intermittency, and kinetic Alfvén wave turbulence Paul Terry Stas Boldyrev.
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Hall-MHD simulations of counter- helicity spheromak merging by E. Belova PPPL October 6, 2005 CMSO General Meeting.
Magnetic Turbulence during Reconnection General Meeting of CMSO Madison, August 4-6, 2004 Hantao Ji Center for Magnetic Self-organization in Laboratory.
SOLAR WIND TURBULENCE; WAVE DISSIPATION AT ELECTRON SCALE WAVELENGTHS S. Peter Gary Space Science Institute Boulder, CO Meeting on Solar Wind Turbulence.
Results from Magnetic Reconnection Experiment And Possible Application to Solar B program For Solar B Science meeting, Kyoto, Japan November 8-11, 2005.
Dynamical plasma response during driven magnetic reconnection in the laboratory Ambrogio Fasoli* Jan Egedal MIT Physics Dpt & Plasma Science and Fusion.
Magnetic Reconnection: Some Answers and Open Questions Amitava Bhattacharjee Space Science Center and Center for Magnetic Self- Organization University.
1 MHD Simulations of 3D Reconnection Triggered by Finite Random Resistivity Perturbations T. Yokoyama Univ. Tokyo in collaboration with H. Isobe (Kyoto.
Laboratory Studies of Magnetic Reconnection – Status and Opportunities – HEDLA 2012 Tallahassee, Florida April 30, 2012 Hantao Ji Center for Magnetic Self-organization.
1 / 22 Solar Flares and Magnetic Reconnection T. Yokoyama (NAOJ) Solar-B science meeting ISAS, NAOJ.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS S. Peter Gary,
Cyclic MHD Instabilities Hartmut Zohm MPI für Plasmaphysik, EURATOM Association Seminar talk at the ‚Advanced Course‘ of EU PhD Network, Garching, September.
Particle Simulations of Magnetic Reconnection with Open Boundary Conditions A. V. Divin 1,2, M. I. Sitnov 1, M. Swisdak 3, and J. F. Drake 1 1 Institute.
William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April.
The Many Scales of Collisionless Reconnection in the Earth’s Magnetosphere Michael Shay – University of Maryland.
Collisionless Magnetic Reconnection J. F. Drake University of Maryland Magnetic Reconnection Theory 2004 Newton Institute.
The Structure of the Parallel Electric Field and Particle Acceleration During Magnetic Reconnection J. F. Drake M.Swisdak M. Shay M. Hesse C. Cattell University.
SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.
A Summary of the Evidence in Favor of the Idea that the Solar Wind is Accelerated by Waves and/or Turbulence S. R. Cranmer 1 & B. D. G. Chandran 2 1 Harvard-Smithsonian.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
The Structure of Thin Current Sheets Associated with Reconnection X-lines Marc Swisdak The Second Workshop on Thin Current Sheets April 20, 2004.
Magnetic Reconnection in Multi-Fluid Plasmas Michael Shay – Univ. of Maryland.
Plasma Dynamos UCLA January 5th 2009 Steve Cowley, UKAEA Culham and Imperial Thanks to Alex Schekochihin, Russell Kulsrud, Greg Hammett and Mark Rosin.
Non-collisional ion heating and Magnetic Turbulence in MST Abdulgader Almagri On behalf of MST Team RFP Workshop Padova, Italy April 2010.
Kinetic Modeling of Magnetic Reconnection in Space and Astrophysical Systems J. F. Drake University of Maryland Large Scale Computation in Astrophysics.
1 Hantao Ji Princeton Plasma Physics Laboratory Experimentalist Laboratory astrophysics –Reconnection, angular momentum transport, dynamo effect… –Center.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Overview of equations and assumptions Elena Khomenko, Manuel Collados, Antonio Díaz Departamento de Astrofísica, Universidad de La Laguna and Instituto.
Reconnection in Large, High-Lundquist- Number Coronal Plasmas A.Bhattacharjee and T. Forbes University of New Hampshire Monday, August 3, Salon D, 2-5.
Multiscale issues in modeling magnetic reconnection J. F. Drake University of Maryland IPAM Meeting on Multiscale Problems in Fusion Plasmas January 10,
Numerical Simulation on Flow Generated Resistive Wall Mode Shaoyan Cui (1,2), Xiaogang Wang (1), Yue Liu (1), Bo Yu (2) 1.State Key Laboratory of Materials.
Experimental Study of Magnetic Reconnection and Dynamics of Plasma Flare Arc in MRX Masaaki Yamada August SHINE Meeting at Nova Scotia Center.
Relativistic Collisionless Shocks in the Unmagnetized Limit
Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics A.Bhattacharjee, W. Fox, K. Germaschewski, and Y-M. Huang Center for Integrated.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Reconnection rates in Hall MHD and Collisionless plasmas
PIC simulations of magnetic reconnection. Cerutti et al D PIC simulations of relativistic pair plasma reconnection (Zeltron code) Includes – Radiation.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
R. A. Treumann, C. H. Jaroschek and O. A. Pokhotelov The magnetic mirror mode is one of the most interesting extremely low-frequency modes developing in.
Dispersive Waves and Magnetic Reconnection Alex Flanagan (University of Wisconsin) J. F. Drake (UMD), M. Swisdak (UMD)
IMPRS Lindau, Space weather and plasma simulation Jörg Büchner, MPAe Lindau Collaborators: B. Nikutowski and I.Silin, Lindau A. Otto, Fairbanks.
1 Turbulent Generation of Large Scale Magnetic Fields in Unmagnetized Plasma Vladimir P.Pavlenko Uppsala University, Uppsala, Sweden.
DSA in the non-linear regime Hui Li Department of Astronomy, Nanjing University.
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
Spectroscopic Detection of Reconnection Evidence with Solar-B II. Signature of Flows in MHD simulation Hiroaki ISOBE P.F. Chen *, D. H. Brooks, D. Shiota,
Ion pickup and acceration in magnetic reconnection exhausts J. F. Drake University of Maryland M. Swisdak University of Maryland T. Phan UC Berkeley E.
Collisionless Magnetic Reconnection J. F. Drake University of Maryland presented in honor of Professor Eric Priest September 8, 2003.
Kinetic Alfvén turbulence driven by MHD turbulent cascade Yuriy Voitenko & Space Physics team Belgian Institute for Space Aeronomy, Brussels, Belgium.
Simulation Study of Magnetic Reconnection in the Magnetotail and Solar Corona Zhi-Wei Ma Zhejiang University & Institute of Plasma Physics Beijing,
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
H. Hasegawa(1), A. Retinò(2), A. Vaivads(3), Y. Khotyaintsev(3), M
1 Joachim Birn LANL Karl Schindler Ruhr-Univ. Bochum Michael Hesse NASA/GSFC Thin Electron Current Sheets and Auroral Arcs Relationship between magnetospheric.
Center for Extended MHD Modeling (PI: S. Jardin, PPPL) –Two extensively developed fully 3-D nonlinear MHD codes, NIMROD and M3D formed the basis for further.
Simulations of Energetic Particle Modes In Spherical Torus G.Y. Fu, J. Breslau, J. Chen, E. Fredrickson, S. Jardin, W. Park Princeton Plasma Physics Laboratory.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Kinetic-Fluid Model for Modeling Fast Ion Driven Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma Physics Laboratory Princeton University.
Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration: Ethan Vishniac, Grzegorz.
Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment David Schaffner Bryn Mawr College Magnetic Reconnection:
Non linear evolution of 3D magnetic reconnection in slab geometry
“Turbulence in low-β reconnection”
Presentation transcript:

Fast Reconnection in High-Lundquist- Number Plasmas Due to Secondary Tearing Instabilities A.Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers Center for Integrated Computation and Analysis of Reconnection and Turbulence, University of New Hampshire and Dartmouth College

Onset of fast reconnection in large, high- Lundquist-number systems The scaling of reconnection in large systems is a problem of great interest where the dimensionless ratio of characteristic dissipation scale to system size is a very small number. What are the mechanisms for the onset of fast reconnection in such systems? Does the answer depend on the mechanism that breaks field lines? One criterion has emerged from Hall MHD (or two-fluid) models, and has been tested carefully in laboratory experiments (MRX at PPPL, VTF at MIT). The criterion is: (Ma and Bhattacharjee 1996, Cassak et al. 2005) or in the presence of a guide field (Aydemir 1992)

Onset of fast reconnection in large, high- Lundquist-number systems (continued) Here we demonstrate here that within the framework of resistive MHD, extended current sheets form in large systems that become spontaneously unstable to fast, super- Alfvenic tearing instabilities, and produce a time- dependent, nonlinear, impulsive reconnection regime in which the reconnection rate exceeds Sweet-Parker by an order of magnitude (without the intervention of Hall MHD effects).

Super-Alfvenic Tearing Instability of Extended Thin Current Sheets Harris sheet Dispersion relation (Coppi, et al. 1976) Thin current sheets of aspect ratio Fastest growing instability For Sweet-Parker sheets (Louriero et al., 2007),,

Summary Onset of fast reconnection, mediated by the dynamics of thin current sheets, in high-Lundquist-number laboratory and space plasmas. Two mechanisms: Hall MHD, seen in theory and laboratory experiments of moderate size, when the Sweet-Parker width falls below the ion skin depth. This onset can be nonlinearly stabilized due to diamagnetic effects. Fast, secondary tearing instabilities of thin current sheets in large systems, substantially exceeding Sweet-Parker rates within the realm of resistive MHD (without invoking Hall current and/or electron pressure tensor effects). Which is the dominant effect?