N. Newman, MSE494/598 Handout #8 page 1. N. Newman, MSE494/598 Handout #8 page 2.

Slides:



Advertisements
Similar presentations
Lecture 5 OUTLINE PN Junction Diodes I/V Capacitance Reverse Breakdown
Advertisements

PN Junction Diodes.
Reverse biased PN junction p n p n Reverse biased PN junction energy diagram.
Integrated Circuit Devices
Physics of Bipolar Junction Transistor Section
Semiconductor basics 1. Vacuum tubes  Diode  Triode 2. Semiconductors  Diode  Transistors Bipolar Bipolar Field Effect Field Effect 3. What’s next?
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
EE105 Fall 2007Lecture 3, Slide 1Prof. Liu, UC Berkeley Lecture 3 ANNOUNCEMENTS HW2 is posted, due Tu 9/11 TAs will hold their office hours in 197 Cory.
Lecture 15, Slide 1EECS40, Fall 2004Prof. White Lecture #15 OUTLINE The pn Junction Diode -- Uses: Rectification, parts of transistors, light-emitting.
Current Components inside Bipolar Junction Transistor (BJT) NPN BJT.
EE105 Fall 2007Lecture 4, Slide 1Prof. Liu, UC Berkeley Lecture 4 OUTLINE Bipolar Junction Transistor (BJT) – General considerations – Structure – Operation.
Deviations from simple theory and metal-semiconductor junctions
EE105 Fall 2011Lecture 3, Slide 1Prof. Salahuddin, UC Berkeley Lecture 3 OUTLINE Semiconductor Basics (cont’d) – Carrier drift and diffusion PN Junction.
MatE/EE 1671 EE/MatE 167 Diode Review. MatE/EE 1672 Topics to be covered Energy Band Diagrams V built-in Ideal diode equation –Ideality Factor –RS Breakdown.
Metal-Semiconductor System: Contact
PHS 468: SEMICONDUCTOR DEVICES DR. O. D. AKINYEMI DEPARTMENT OF PHYSICS, UNIVERSITY OF AGRICULTURE, ABEOKUTA, NIGERIA.
Metal-Semiconductor Interfaces
MOS Capacitors ECE Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the type that.
ELCT564 Spring /17/20151ELCT564 Diodes, Transistors and Mixers.
Operation Theory BIPOLAR JUNCTION TRANSISTOR (BJT) Engr.Usman Ali khan.
Depletion Region ECE Depletion Region As electrons diffuse from the n region into the p region and holes diffuse from the p region into the n region,
Physical Operation of BJTs Structure review Voltage vs. position in an npn structure –cutoff –active –saturation Designing for high  The Early effect.
ENE 311 Lecture 10.
Chapter (3) Transistors and Integrated Circuits B I P O L A R J U N C T I O N T R A N S I S T O R BJT in contrast to the "unipolar" FET Both minority and.
Week 11b Lecture Materials Diodes and some of their uses: Review of pn-diode structure Diode I-V characteristics: Actual characteristic – exponential Ideal.
Drift and Diffusion Current
P-N Junctions Physical aspects of pn junctions Mathematical models Depletion capacitance Breakdown characteristics Basis for other devices Circuit Symbol.
Chapter 3 Solid-State Diodes and Diode Circuits
CV Measurements Diode junction capacitance C j =  A/w Depletion depth np+p+ w VaVa reverse bias:  =  r  o (static dielectric constant). For Si,  r.
Basic Circuit Components
Microelectronic Circuit Design McGraw-Hill Chapter 5 Bipolar Junction Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Chap.
Bipolar Junction Transistors (BJTs) The bipolar junction transistor is a semiconductor device constructed with three doped regions. These regions essentially.
Recall Lecture 8 Clipper – Step 1: Find the clip value by doing KVL at the output branch – Step 2: Set the conditions to know whether diode is on or off.
TRANSISTOR.  A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power.  The transistor is the fundamental.
Chapter Intrinsic: -- case for pure Si -- # electrons = # holes (n = p) Extrinsic: -- electrical behavior is determined by presence of impurities.
Introduction to Transistors
Semiconductor pn junctions. Built-in potential defined by equilibrium and levels N A, N D far from metallurgical junction  0 = V T ln[n n0 /n p0 ] =
1 Concepts of electrons and holes in semiconductors.
Bipolar Junction Transistor (BJT). OUTLINE – General considerations – Structure – Operation in active mode – Large-signal model and I-V characteristics.
The review of modern physics has given us a description of nature. Waves are described with a wave equation. Particles are described with particle equations.
MOS Capacitors UoG-UESTC Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the.
1 Semiconductor Devices  Metal-semiconductor junction  Rectifier (Schottky contact or Schottky barrier)  Ohmic contact  p – n rectifier  Zener diode.
Control questions (physics basics, pn-junction) What does “direct bandgap” and “indirect bandgap” semiconductor mean? What is the Fermi-level? How does.
CHAPTER 4: P-N JUNCTION Part I.
Integrated Circuit Devices
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 2, slide 1 Introduction to Electronic Circuit Design.
1 Concepts of electrons and holes in semiconductors.
President UniversityErwin SitompulSDP 11/1 Lecture 11 Semiconductor Device Physics Dr.-Ing. Erwin Sitompul President University
COURSE NAME: SEMICONDUCTORS Course Code: PHYS 473 Week No. 5.
PEN NO Ahir Darshan Harsora Ashish Mistry Ravi.
Basic Circuit Components
Lecture 4 Bipolar Junction Transistors (BJTs)
ECE 333 Linear Electronics
Chapter 10 BJT Fundamentals. Chapter 10 BJT Fundamentals.
Chapter 4 Bipolar Junction Transistor
Sung June Kim Chapter 10. BJT Fundamentals Sung June Kim
A p-n junction is not a device
5.4 Reverse-Bias Breakdown
Bipolar Junction Transistor (BJT) Chapter and 25 March 2016
Depletion Region ECE 2204.
ECE 333 Linear Electronics
Semiconductor Device Physics
EE130/230A Discussion 5 Peng Zheng.
Electronic Fundamental Muhammad Zahid
Physics of Bipolar Junction Transistor
Lecture 4 OUTLINE Bipolar Junction Transistor (BJT)
Chapter 4 Bipolar Junction Transistor
Bipolar Junction Transistor (BJT) Chapter and 17 March 2017
Bipolar Junction Transistor (BJT) Chapter and 27 March 2019
Presentation transcript:

N. Newman, MSE494/598 Handout #8 page 1

N. Newman, MSE494/598 Handout #8 page 2

N. Newman, MSE494/598 Handout #8 page 3

N. Newman, MSE494/598 Handout #8 page 4 Potential diagram of Schottky barrier (n-type material) Metal Semiconductor CBM VBM bb Fermi-level

N. Newman, MSE494/598 Handout #8 page 5

N. Newman, MSE494/598 Handout #8 page 6

N. Newman, MSE494/598 Handout #8 page 7

N. Newman, MSE494/598 Handout #8 page 8

N. Newman, MSE494/598 Handout #8 page 9

N. Newman, MSE494/598 Handout #8 page 10

N. Newman, MSE494/598 Handout #8 page 11

N. Newman, MSE494/598 Handout #8 page 12

N. Newman, MSE494/598 Handout #8 page 13

N. Newman, MSE494/598 Handout #8 page 14

N. Newman, MSE494/598 Handout #8 page 15

N. Newman, MSE494/598 Handout #8 page 16 Electrostatics of p++ / n junction or n-Schottky barrier d 2 V/dx 2 = -  /  q N d   E = dV/dx = -  /  dx = - q N d x  V = - q N d x  dx = - q N d x 2 / 2  x=0 -qN d x d /  E x=x d -V

N. Newman, MSE494/598 Handout #8 page 17 Transition Capacitance of p++ / n junction or n-Schottky barrier V d - V applied = - q N d x d 2 / 2  i.e. x d = (V applied -V d ) 2  / q N d PARALLEL PLATE CAPACITOR C =  A / x d C T = A [q N d  / 2 (V applied - V d )] 1/2

N. Newman, MSE494/598 Handout #8 page 18 1/C T 2 = 2 (V applied - V d ) / (q N d  A 2 ) 1/C T 2 V applied Slope o 1/N d c VdVd

N. Newman, MSE494/598 Handout #8 page 19 N d 1 N d 2 V applied 1/C T 2 Slope o 1/N d 1 c VdVd Slope o 1/N d 2 c N d 2 >> N d 1 Can tailor C(V) by the control of the doping profile, for example for a hyperabrupt junction C is proportional to V -2 facilitating  = (LC)- 1/2 being proportional to a control voltage 1/C T 2 = 2 (V applied - V d ) / (q N d  A 2 )

N. Newman, MSE494/598 Handout #8 page 20 Diffusion Capacitance of p++ / n junction In forward bias, holes are injected into the n-type region. Q D = A q p no L p (e v D /V T - 1) = (L p 2 /D p ) I =  I C D = dQ/dV =  dI / dV =  I / (n V t )

N. Newman, MSE494/598 Handout #8 page 21

N. Newman, MSE494/598 Handout #8 page 22

N. Newman, MSE494/598 Handout #8 page 23

N. Newman, MSE494/598 Handout #8 page 24

N. Newman, MSE494/598 Handout #8 page 25

N. Newman, MSE494/598 Handout #8 page 26

N. Newman, MSE494/598 Handout #8 page 27

N. Newman, MSE494/598 Handout #8 page 28

N. Newman, MSE494/598 Handout #8 page 29 NPN Bipolar Junction Transistor (BJT)

N. Newman, MSE494/598 Handout #8 page 30