An Alternative to Grahame Rees’ Isochronous FFAG Lattice for the Acceleration of Muons from 10 – 20 GeV Horst Schönauer, CERN Proposed FFAG-type Muon Accelerators:

Slides:



Advertisements
Similar presentations
A 10 GeV, 4 MW, FFAG, Proton Driver at 50 Hz G H Rees, RAL.
Advertisements

12 PERIOD HYBRID WARM-COLD SYNCHROTRON FOR THE MUON COLLIDER Al Garren November 10, 2011.
Insertions for an Isochronous, 8-16 turn, 8-20 GeV, Muon FFAG G H Rees, RAL.
Isochronous, FFAG Rings with Insertions for Rapid Muon or Electron Acceleration G H Rees, RAL.
FFAG Workshop 2005 Dejan Trbojevic April 3, 2005 Electron model lattice with added edge focusing  Introduction:  Rick Baartman : “Spiral focusing slides”
Options for a 50Hz, 10 MW, Short Pulse Spallation Neutron Source G H Rees, ASTeC, CCLRC, RAL, UK.
FFAG Concepts and Studies David Neuffer Fermilab.
FFAG Tune-stabilized, Linear-field Nonscaling FFAG Lattice Design C. Johnstone, Fermilab S. Koscielniak, TRIUMF FFAG07 April 12-17, 2007 LPSC, Grenoble,
The EMMA Project Rob Edgecock STFC Rutherford Appleton Laboratory & Huddersfield University.
The EMMA Project Rob Edgecock STFC Rutherford Appleton Laboratory & Huddersfield University *BNL, CERN, CI, FNAL, JAI, LPSC Grenoble, STFC, TRIUMF.
2002/7/02 College, London Muon Phase Rotation at PRISM FFAG Akira SATO Osaka University.
2002/7/04 College, London Beam Dynamics Studies of FFAG Akira SATO Osaka University.
Particle dynamics in electron FFAG Shinji Machida KEK FFAG04, October 13-16, 2004.
1 Status of EMMA Shinji Machida CCLRC/RAL/ASTeC 23 April, ffag/machida_ ppt & pdf.
Muon Acceleration Plan David Kelliher ASTeC/STFC/RAL UKNF WP1, October 9 th, 2008.
Novel Constant-Frequency Acceleration Technique for Nonscaling Muon FFAGs Shane Koscielniak, TRIUMF, October 2004 Classical scaling FFAGs (MURA) have geometrically.
Bucketless Acceleration in nonscaling FFAG’s & Sketches of muon and electron machines Shane Koscielniak, TRIUMF, Vancouver, BC, Canada April 2004  Phase.
UK FFAG Plans Introduction to FFAGs Scaling vs non-scaling Non-scaling FFAGs Non-scaling POP Why the interest? UK plans.
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
, EUROnu Meeting, Strasbourg J. Pasternak Status and recent progress on muon IDS-FFAG J. Pasternak, Imperial College, London / RAL STFC Work.
FFAG Tune-stabilized, Linear-field FFAG C. Johnstone, Fermilab S. Koscielniak, TRIUMF FFAG06 Japan f Fermilab.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Electron Model of Linear-Field FFAG for Muon Acceleration What does it look like? – much like the KEK ATF (36 F0D0 arc cells) but without its straight.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,
Acceleration System Comparisons S. Machida ASTeC/RAL September, 2005, ISS meeting at CERN.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
November 14, 2004First ILC Workshop1 CESR-c Wiggler Dynamics D.Rubin -Objectives -Specifications -Modeling and simulation -Machine measurements/ analysis.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
NUFACT’05 24-June-2005 H. Schönauer CERN The typical approaches to Muon acceleration at higher energies: Recirculating linacs Scaling FFAG’s : constant.
FFAG Studies at RAL G H Rees. FFAG Designs at RAL Hz, 4 MW, 3-10 GeV, Proton Driver (NFFAGI) Hz,1 MW, GeV, ISIS Upgrade (NFFAG) 3.
IDS-NF Accelerator Baseline The Neutrino Factory [1, 2] based on the muon storage ring will be a precision tool to study the neutrino oscillations.It may.
1 EMMA Tracking Studies Shinji Machida ASTeC/CCLRC/RAL 4 January, ffag/machida_ ppt & pdf.
ERHIC Low-Energy (FFAG) Ring Progress Report 2 November 19, 2013Stephen Brooks, eRHIC FFAG meeting1.
HYBRID WARM-COLD SYNCHROTRON FOR THE MUON COLLIDER Al Garren July 28, 2011.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
4 MW, 50 Hz, 10 GeV, 1 ns (rms), FFAG Proton Driver Study G H Rees, RAL.
FFAG Lattice Design of eRHIC and LHeC Dejan Trbojevic and Stephen Brooks EIC 2014 Workshop – Dejan Trbojevic and Stephen Brooks 1.
Scaling Gas-filled Muon Ring Coolers Al Garren, UCLA Ringcooler Mini-workshop Tucson, December 15-16, 2003.
FFAG’ J. Pasternak, IC London/RAL Proton acceleration using FFAGs J. Pasternak, Imperial College, London / RAL.
Hybrid Synchrotron Arc: 2 Dipoles per Half Cell J. Scott Berg Advanced Accelerator Group Meeting 28 July 2011.
Workshop on Accelerator R&D for Ultimate Storage Rings – Oct Nov.1 – Huairou, Beijing, China A compact low emittance lattice with superbends for.
1 Tracking study of muon acceleration with FFAGs S. Machida RAL/ASTeC 6 December, ffag/machida_ ppt.
Suzie Sheehy DPhil Candidate, John Adams Institute 3/9/08 PAMELA lattice studies Dynamics of the Machida lattice.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Layout and Arcs lattice design A. Chancé, B. Dalena, J. Payet, CEA R. Alemany, B. Holzer, D. Schulte CERN.
Target insertion matching and standard cell optics optimization
J-PARC main ring lattice An overview
eRHIC FFAG Lattice Design
PROGRESS REPORT OF A NLNS-FFAG ADS MAGNET
Optimization of Triplet Field Quality in Collision
Large Booster and Collider Ring
Vertical Orbit Excursion FFAGs and Other Things
Isochronous, FFAG Rings with Insertions for Rapid Muon or Electron Acceleration G H Rees, RAL.
Electron collider ring Chromaticity Compensation and dynamic aperture
The new 7BA design of BAPS
FFAG Accelerator Proton Driver for Neutrino Factory
M. Biagini, S. Guiducci ECLOUD WG webex meeting December 15, 2009
RLA WITH NON-SCALING FFAG ARCS
Negative Momentum Compaction lattice options for PS2
PS2 meeting NMC lattice for PS2 Y. Papaphilippou September 28th, 2007.
Optics considerations for PS2
Update on Alternative Design of jleic ion injector Complex B
Negative Momentum Compaction lattice options for PS2
Update on MEIC Nonlinear Dynamics Work
Alternative Ion Injector Design
Status of IR / Nonlinear Dynamics Studies
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

An Alternative to Grahame Rees’ Isochronous FFAG Lattice for the Acceleration of Muons from 10 – 20 GeV Horst Schönauer, CERN Proposed FFAG-type Muon Accelerators: TypeProposalsFeaturesIsochronous Linear, scalingJapan, YM et alQ x,y = constFar from Linear, non- scaling CJ, AS, EK, SB et al Q x,y cross integers nearly Non-linear, non- scaling GHR 123 cell  ­ t   ; Q x,y cross integers exactly Non-linear, non- scaling Modif. GHR : HS 66 cell Q­ x,y,  ­t  const. (not yet) exactly

d d F F D D B B F F D D Homogenous Sector Homogenous Sector b Homogenous Rectangular O3 O2 O0 O1 GHR 123 Cell Lattice 8-20 GeV Length [m]B, Bmax [T] Cell19.35 O33 B0.74 O21 F O10.5 D1-2.3 O02 b0.32 Proposed 66 Cell Lattice 10 – 20 GeV Reference Orbit 15 GeV

Basic Parameters Energy Range10 – 20 GeV Circumference m Number of Cells66 Inverted Bending b / B-1/8 Long Straight Sections6 m T101520GeV BB Tm B’±8.42±12.59±16.75T/m for kF, kD = ± 0.25 Design Principles: Extended Triplet Cell One high-field SC homogenous bending per half cell One low-field room temp. homogenous bending per half cell Approx. Constant Tune – no integer crossing Simple Elements (for tracking …): Rectang. F, D magnets Local Phase Slip accepted → Off-crest acceleration

At y = 0 (Central Energy, T = 15 GeV), B=0 and B’ = B’ 0 : As the Gradients B’ are given by k (=0.25 m -2 ), the maximum fields can be < 2T if |y max, min | < 0.1m Plot 10 Evaluate PBF,gPBF,y,YFmin,YFmax Consequences of k F,D  const.

10 – 15 – 10 GeV Orbits and Magnets Superimposed (AGILE Code Results) T [Gev]L Halfcell QxQyGamma-t

Plot Evaluate tps.Init15T.Incom.Dx , , e20 -> 0,B r,B r min,B r max, PlotEvaluatekFeff.Incom.Init15T,B r,B r min,B r maxPlotEvaluatetps0 - tps.Init15T.Incom,B r,B r min,B r max Error in Cell ToF for Rectangular inverse b Magnet with added quadratic Dx component [ps] BB BB BB kFkF Cell ToF for lin. Dx = -0.37, -0.36, m Playing with Mathematica..

BeamOptics Representation

sm  mDm OpticsPlot … Graphics …,SigmaEndSigma ,0.,Sigma ,0., Tunes DVectorEndDVector , Path RelativeTimeDispersion BeamOptics Representation

Open Questions : (After finalizing and optimizing the lattice) Consequences of local    t Classical acceleration at high  s feasible? RF acceptance Orbit control in isochronous lattice Dynamic aperture (Sextupole!)

T101520GeV BB Tm B’±8.42±12.59±16.75 T/m for kF, kD = ± 0.25 Length [m]Bmax [T] Cell19.35 O33 B0.74 O21 F O10.5 D1-2.3 O02 b0.321