18 DTLC(+57Da)IGYHA 26 HA N-terminus HA C-terminus 557 DGSLQC(+57Da)RIC(+57Da)I 566 ( A ) ( B ) 1 MNPNQKIITIGSVC 14 (+57Da) NA N-terminus ( C ) NA C-terminus.

Slides:



Advertisements
Similar presentations
S-shaped growth Flowers. dA / dt = r * A * (K-A) / K If A
Advertisements

Template Implicit function overload. Function overload Function overload double ssqq(double & a, double & b) { return(a*b);} float ssqq(float & a, float.
Fig. 4-1, p Fig. 4-2, p. 109 Fig. 4-3, p. 110.
Slide 1Fig. 2.1a, p.25. Slide 2Fig. 2.1b, p.25 Slide 3Table 2.1, p.25.
Direct MALDI analysis of naturally cleaved human saliva samples: Mapping to a series of KPQ- terminated peptides from small salivary proteins. TP10 #XXX.
Protein mix, in-sol digestion, LCMSMS Run II, Skupina 1 MS, TIC.
C h e m i c a l R e a c t i o n s. C h e m i c a l R e a c t i o n A p r o c e s s i n w h i c h o n e s u b s t a n c e i s c h a n g e d i n t o a n.
M5 - 09/02/2012 M4 - 09/02/ V ; 0.010nA. M8 - 09/02/2012 M9 - 09/02/ V ; 0.15nA1.8V ; 0.21nA.
Slide 1Fig. 15.1, p.453. Slide 2Fig. 15.1a, p.453.
Slide 1Fig. 22.1, p.669. Slide 2Fig. 22.3, p.670.
Slide 1Fig. 18.1, p.545. Slide 2Fig. 18.1e, p.545.
Slide 1Fig. 17.1, p.513. Slide 2Table 17.1, p.514.
Slide 1Fig. 11.1, p.337. Slide 2Fig. 11.2, p.338.
Slide 1Fig. 19.1, p Slide 2Fig. 19.2, p. 583.
Slide 1Fig. 16.1, p.488. Slide 2Fig. 16.2, p.488.
De Novo Sequencing and Homology Searching with De Novo Sequence Tags.
Slide 1Fig. 21.1, p.641. Slide 2Fig. 21.2, p.642.
A) 80 b) 53 c) 13 d) x 2 = : 10 = 3, x 3 = 309.
P.464. Table 13-1, p.465 Fig. 13-1, p.466 Fig. 13-2, p.467.
Fig. 11-1, p p. 360 Fig. 11-2, p. 361 Fig. 11-3, p. 361.
Fa 05CSE182 CSE182-L7 Protein sequencing and Mass Spectrometry.
LZW Encoding The input message was taken from:
Table 6-1, p Fig. 6-1, p. 162 p. 163 Fig. 6-2, p. 164.
A 1 A 2 A 3 A 4 B B B
Digital to Analog (D/A) Converter Discussion D2.2.
The Mechanism of Protein Splicing: **** the movie **** Animation by Maurice W. Southworth As seen in InBase, Francine Perler, Curator.
Figure 1.1 The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer views the path of the ball as a parabola.
Slide 1Fig. 3.1, p.59. Slide 2Fig. 3.2, p.59 Slide 3Fig. 3.2a, p.59.
Slide 1Fig. 4.1, p.78. Slide 2Fig. 4.3, p.78 Slide 3Fig. 4.4, p.80.
Find the hypotenuse in a right triangle with legs a = 3 and b = Exercise.
Protein sequencing and Mass Spectrometry. Sample Preparation Enzymatic Digestion (Trypsin) + Fractionation.
Using the Quotient of Powers Property
Mueller LN, Brusniak MY, Mani DR, Aebersold R
COORDINATE GEOMETRY Distance between 2 points Mid-point of 2 points.
1.5 – Midpoint. Midpoint: Point in the middle of a segment A B M.
PROTEIN QUANTIFICATION AND PTM JUN SIN HSS.I. PROJECT 1.
Sequence Information Content in Peptide MS/MS Spectra Karl R. Clauser Broad Institute of MIT and Harvard BioInfoSummer 2012 University of Adelaide December,
EXAMPLE 2 Use the power of quotient property x3x3 y3y3 = a.a. x y 3 (– 7) 2 x 2 = b.b. 7 x – 2 – 7 x 2 = 49 x 2 =
Algorithmic Problems in Peptide Sequencing
Ch 8: Exponents B) Zero & Negative Exponents
Welcome Back! February 27, 2012 Sit in any seat for today. You will have assigned seats tomorrow Were you absent before the break? Plan on coming to tutorial.
Temple University MASS SPECTROMETRY FURTHER INVESTIGATIONS Ilyana Mushaeva and Amber Moscato Department of Electrical and Computer Engineering Temple University.
Multiplying and Factoring
Lecture 1: Monge’s projection “The point”
4.5 Multiplying Polynomials by Monomials Objective: To multiply a polynomial by a monomial. Warm – up: Simplify: 1) x 3 ∙x 6 2) 2(a – 4) 3) 4(2y + 3) 4)
 -amanitin CHX (h) K921 Ac-Abl Abl Additional file, Figure S4.
Warm-up Write the following formulas 1.Distance 2.Midpoint What is the Pythagorean Theorem?
CSE182 CSE182-L11 Protein sequencing and Mass Spectrometry.
Study Guidelines for Chemistry in Chapters 1 and 2 Look at the slides that follow containing the list of reactions on which to focus. Re-read the indicated.
Lecture-9 MS Techniques and Protein Identification Huseyin Tombuloglu, Phd GBE423 Genomics & Proteomics.
Protein Identification Using Tandem Mass Spectrometry Nathan Edwards Center for Bioinformatics and Computational Biology University of Maryland, College.
EXAMPLE 3 Multiply polynomials vertically Find the product (b 2 + 6b – 7)(3b – 4). SOLUTION STEP 1 Multiply by – 4. b 2 + 6b – 7 – 4b 2 – 24b b –
Factor completely EXAMPLE 4 Factor the polynomial completely. a.a. n 2 – + 2n –1 SOLUTION a.a. The terms of the polynomial have no common monomial factor.
Hyperbolas Date: ______________. Horizontal transverse axis: 9.5 Hyperbolas x 2x 2 a2a2 y2y2 b2b2 –= 1 y x V 1 (–a, 0)V 2 (a, 0) Hyperbolas with Center.
B Monoisotopic mass of neutral peptide M r (calc): Fixed modifications: Carbamidomethyl Ions score: 45 † Expect: ‡ Matches (red): 18/50.
Fig. 6-CO, p p. 185a p. 185b p. 185c p. 185d.
Figure S1additional MS/MS Spectra and b, y ion tables of Phosphorylated Peptides in KO and WT samples, whose Debunker or A score is lower than the cut-off.
Warm-Up Ch3 #4 Gr 6.
مفهوم السياحة المحلية في الأردن
1 (x+1)(x+3) (x-3)(x+2) (x-1)(x+3) x2+2x-3 (x+6)(x-2) (x+1)(x-3)
Multiplying Special Cases
Fig. 6-CO, p. 211.
Objective Factor polynomials by using the greatest common factor.
07CO, p. 190.
Objective Factor polynomials by using the greatest common factor.
Organization- Unit 1 CDA
02CO, p. 24.
A STAAR REVIEW CIRCUIT A # 1-16 M. N. O. P..
Organic Causes of Mania
Removal of brackets Example Work out each of the following
Presentation transcript:

18 DTLC(+57Da)IGYHA 26 HA N-terminus HA C-terminus 557 DGSLQC(+57Da)RIC(+57Da)I 566 ( A ) ( B ) 1 MNPNQKIITIGSVC 14 (+57Da) NA N-terminus ( C ) NA C-terminus 456 SWPDGAELPFTIDK 469 Fig. S m/z y2y y3y y4y y5y y 6 +57Da y 7 +57Da b 4 +57Da b 5 +57Da b3b3 b 6 +57Da b 7 +57Da b 8 +57Da MS/MS % 100% 0 [b Da] m/z y 2 +57Da y 3 +57Da b Da y Da b 8 +57Da y Da y Da y 4 +57Da b 6 +57Da MS/MS % 100% 0 ( D ) y y m/z y b2b2 y6y6 y7y7 y8y8 y 10 y 11 b 12 b 13 MS/MS % 100% 0 b y 2 +57Da y 4 +57Da y 5 +57Da y 6 +57Da [y Da] 2+ y 7 +57Da b7b7 b8b8 b9b9 b 11 b 12 b 13 MS/MS % 100% 0 m/z

[121xp_HA] MKAILVVLLY TFATANADTL CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDKHNGKLCK 60 [X181A_HA] MKAILVVLLY TFATANADTL CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDKHNGKLCK 60 [121xp_HA] LRGVAPLHLG KCNIAGWILG NPECESLSTA SSWSYIVETS SSDNGTCYPG DFIDYEELRE 120 [X181A_HA] LRGVAPLHLG KCNIAGWILG NPECESLSTA SSWSYIVETS SSDNGTCYPG DFIDYEELRE 120 [121xp_HA] QLSSVSSFER FEIFPNTSSW PNHDSNKGVT AACPHAGAKS FYKNLIWLVK KGNSYPKLSK 180 [X181A_HA] QLSSVSSFER FEIFPKTSSW PNHDSDKGVT AACPHAGAKS FYKNLIWLVK KGNSYPKLSK 180 [121xp_HA] SYINDKGKEV LVLWGIHHPS TSADQQSLYQ NADAYVFVGS SRYSKKFKPE IAIRPKVRGQ 240 [X181A_HA] SYINDKGKEV LVLWGIHHPS TSADQQSLYQ NADAYVFVGS SRYSKTFKPE IAIRPKVRDR 240 [121xp_HA] EGRMNYYWTL VEPGDKITFE ATGNLVVPRY AFAMERNAGS GIIISDTPVH DCNTTCQTPK 300 [X181A_HA] EGRMNYYWTL VEPGDKITFE ATGNLVVPRY AFAMERNAGS GIIISDTPVH DCNTTCQTPK 300 [121xp_HA] GAINTSLPFQ NIHPITIGKC PKYVKSTKLR LATGLRNVPS IQSRGLFGAI AGFIEGGWTG 360 [X181A_HA] GAINTSLPFQ NIHPITIGKC PKYVKSTKLR LATGLRNVPS IQSRGLFGAI AGFIEGGWTG 360 [121xp_HA] MVDGWYGYHH QNEQGSGYAA DLKSTQNAID EITNKVNSVI EKMNTQFTAV GKEFNHLEKR 420 [X181A_HA] MVDGWYGYHH QNEQGSGYAA DLKSTQNAID EITNKVNSVI EKMNTQFTAV GKEFNHLEKR 420 [121xp_HA] IENLNKKVDD GFLDIWTYNA ELLVLLENER TLDYHDSNVK NLYEKVRSQL KNNAKEIGNG 480 [X181A_HA] IENLNKKVDD GFLDIWTYNA ELLVLLENER TLDYHDSNVK NLYEKVRSQL KNNAKEIGNG 480 [121xp_HA] CFEFYHKCDN TCMESVKNGT YDYPKYSEEA KLNREEIDGV KLESTRIYQI LAIYSTVASS 540 [X181A_HA] CFEFYHKCDN TCMESVKNGT YDYPKYSEEA KLNREEIDGV KLESTRIYQI LAIYSTVASS 540 [121xp_HA] LVLVVSLGAI SFWMCSNGSL QCRICI 566 [X181A_HA] LVLVVSLGAI SFWMCSNGSL QCRICI 566 Fig. S2 [121xp_NA] MNPNQKIITI GSVCMTIGMA NLILQIGNII SIWISHSIQL GNQNQIETCN QSVITYENNT 60 [X181A_NA] MNPNQKIITI GSVCMTIGMA NLILQIGNII SIWISHSIQL GNQNQIETCN QSVITYENNT 60 [121xp_NA] WVNQTYVNIS NTNFAAGQSV VSVKLAGGSS LCPVSGWAIY SKDNSVRIGS KGDVFVIREP 120 [X181A_NA] WVNQTYVNIS NTNFAAGQSV VSVKLAGNSS LCPVSGWAIY SKDNSVRIGS KGDVFVIREP 120 [121xp_NA] FISCSPLECR TFFLTQGALL NDKHSNGTIK DRSPYRTLMS CPIGEVPSPY NSRFESVAWS 180 [X181A_NA] FISCSPLECR TFFLTQGALL NDKHSNGTIK DRSPYRTLMS CPIGEVPSPY NSRFESVAWS 180 [121xp_NA] ASACHDGINW LTIGISGPDN GAVAVLKYNG IITDTIKSWR NNILRTQESE CACVNGSCFT 240 [X181A_NA] ASACHDGINW LTIGISGPDN GAVAVLKYNG IITDTIKSWR NNILRTQESE CACVNGSCFT 240 [121xp_NA] VMTDGPSNGQ ASYKIFRIEK GKIVKSVEMN APNYHYEECS CYPDSSEITC VCRDNWHGSN 300 [X181A_NA] VMTDGPSNGQ ASYKIFRIEK GKIVKSVEMN APNYHYEECS CYPDSSEITC VCRDNWHGSN 300 [121xp_NA] RPWVSFNQNL EYQIGYICSG IFGDNPRPND KTGSCGPVSS NGANGVKGFS FKYGNGVWIG 360 [X181A_NA] RPWVSFNQNL EYQIGYICSG IFGDNPRPND KTGSCGPVSS NGANGVKGFS FKYGNGVWIG 360 [121xp_NA] RTKSISSRNG FEMIWDPNGW TGTDNNFSIK QDIVGINEWS GYSGSFVQHP ELTGLDCIRP 420 [X181A_NA] RTKSISSRNG FEMIWDPNGW TGTDNNFSIK QDIVGINEWS GYSGSFVQHP ELTGLDCIRP 420 [121xp_NA] CFWVELIRGR PKENTIWTSG SSISFCGVNS DTVGWSWPDG AELPFTIDK 469 [X181A_NA] CFWVELIRGR PKENTIWTSG SSISFCGVNS DTVGWSWPDG AELPFTIDK 469

Fig. S3 281 C(+144Da)YPDSSEITC(+57Da)VC (+57Da)R SC(+57Da)YPDSSEITC(+57Da)VC (+57Da)R 293 ( A ) 334 S(+72Da)C(+144Da)GPVSSNGAN(+1Da)GYK TGSC(+57Da)GPVSSN(+1Da)GAN(+1Da)GYK 347 ( B ) m/z y 2 +57Da y 3 +57Da b 3 +57Da y Da y Da [y Da] 2+ [y Da] 2+ y Da y Da y Da y Da y Da y Da y Da b Da b Da MS/MS (2+) 50% 100% m/z y3y3 y 4 +1Da y 6 +1Da y 7 +2Da y 9 +2Da y 11 +2Da y 12 +2Da y Da [b Da] 2+ b Da MS/MS (2+) [b Da] 2+ 50% 100% 0 b Da b Da

HA(PDB: 3LZG) Cys21 Cys107 Cys153 Cys492 NA(PDB: 3NSS) Cys124 Cys129 Cys231 Cys233 Cys238 Cys290 Cys318 Cys417 Cys421 Cys84 Cys481 Cys72 Cys320 Cys161 Cys92 Cys184 Cys281 Cys292 Cys446 Cys279 Cys59 Cys488 Fig. S4 Cys335 Cys292 Cys296

Fig. S5 39 FYIQM 44 C(+72Da)TELK 48 CH 2 S O O H m/z b2b2 b3b3 b4b4 y4y4 y 5 +72Da y 6 +72Da y 7 +72Da y 8 +72Da b Da MS/MS (2+) C+72Da 50% 100% 0

Fig. S6 ( A ) ( B ) NYMC-X181A-HA: 384 STQNAID(+144Da)EITNKVNSVIEK 402 y 12 y 13 b6b6 NIBRG-121xp-NA: 181 ASAC(+57Da)HD(+144Da)GINWL 191 b5b5 b6b6 y5y m/z b5b5 b6b6 y [y Da] 2+ [y Da] 2+ [y Da] 2+ [y Da] 2+ [y Da] 2+ D+144 DaIAN Q 50% 100% MS/MS (3+) m/z y2y2 y3y3 [b Da] 2+ b 5 +57Da b Da b Da b Da b Da b Da [b Da] 2+ y 5 2+ D+144 Da G I N W 50% 100% MS/MS (2+)