Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:

Slides:



Advertisements
Similar presentations
December 4, 2007Béla Majorovits,MPI für Physik, München Excellence Cluster Universe – Science Week 2007 The Germanium Detector Array (GERDA) for the search.
Advertisements

S. Belogurov, ITEP/INR Moscow GERDA experiment New experiment for the search of neutrinoless double beta decay of 76 Ge at LNGS GERmanium Detector.
A purification plant for liquid argon (nitrogen) Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
LNGS (GERmanium Detector Assembly Stefan Schönert MPIK Heidelberg NOW 2004, Sept. 12, 2004.
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
K. Zuber, Uni. Sussex IDEA Meeting, Milano 9. Nov Status of COBRA.
Neutrinoless Double Beta Decay – Status of GERDA
September 14, 2007Hardy Simgen, TAUP 2007 / Sendai1 Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
Experimental status of the Double Beta Decay Marisa Pedretti INFN Milano Bicocca.
M. Di Marco, P. Peiffer, S. Schönert
Neutrinoless Double Beta Decay – Status of GERDA
WP2 Background simulations Outline Execution plan for the third year Progress of the work Activities and news.
GERDA: GERmanium Detector Array
WP3: R&D for ultra-low background techniques and facilities in the EU underground labs Dr. Matthias Laubenstein Laboratori Nazionali del Gran Sasso ITALY.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
COBRA Double Beta Decay Experiment D.Y. Stewart, Dr. Y.A. Ramachers, Prof. P.F.Harrison Experimental Particle Physics Group University of Warwick What.
Low-background aspects of GERDA
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Small 0νββ decay half-life leads to low.
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
Sensitivity to half life of 0νββ decay (left) and to effective Majorana neutrino mass (right) of an experiment as a function of exposure for different.
Context: astroparticle physics, non-accelerator physics, low energy physics, natural sources physics, let’s-understand-the-Universe physics mainly looking.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
Operation of bare Ge-diodes in LN/LAr 1 st IDEA meeting Como, April 8 (2004) Stefan Schoenert.
CTF and low background facility at Gran Sasso A. Ianni a, M. Laubenstein a and Y. Suvorov a a INFN, Gran Sasso Laboratory, Assergi (AQ), Italy The Counting.
Planned Transregional Collaborative Research Center TR27: Neutrinos and Beyond Project A4: Development of segmented germanium detectors for the investigation.
M. Wojcik Instytute of Physics, Jagiellonian University
May 6, 2006Henderson Dusel Capstone Meeting Low Background Counting A Facility Wish List for the New Underground Laboratory F. Calaprice.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
The GERDA experiment L. Pandola INFN, Gran Sasso National Laboratory for the GERDA Collaboration WIN2009, Perugia, September 17 th 2009.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
MaGe: a Monte Carlo framework for the GERDA and Majorana experiments Luciano Pandola INFN, Laboratori Nazionali del Gran Sasso for the MaGe development.
Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Cracow, Poland The GERDA Experiment at Gran.
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
TG 11 overview / Material screening Hardy Simgen MPI für Kernphysik for Task Group 11.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Benjamin Spaun Whitworth College Advisors:
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
M.Altmann, GERDA Status Report SNOLAB Workshop IV, Investigating Neutrinoless Double Beta Decay Status of the GERDA Experiment Michael Altmann.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
MPI für Physik, Fachbeirat, Béla Majorovits The GERDA experiment Béla Majorovits.
1 DarkSide Collaboration APC Paris, France Augustana College, USA Black Hills State University, USA Fermilab, USA IHEP, China INFN Laboratori Nazionali.
IDEA Meeting, , Paris, France New results on the Argon purification Grzegorz Zuzel Max-Planck-Institut für Kernphysik, Heidelberg.
5/13/11 FCPA Mini-RetreatDarkSide - S.Pordes1 DarkSide 10 kg Prototype at Princeton Distillation Column for Depleted Argon at Fermilab DarkSide 50 at Gran.
JINR group V. Brudanin, V. Egorov, K. Gusev, A. Klimenko, O. Kochetov, I. Nemchenok, V. Sandukovsky, A. Smolnikov, M.Shirchenko, D. Zinatulina Project.
Enter the DarkSide Stefano Davini University of Houston RICAP-13.
1 Cary Kendziora Fermi National Laboratory Cary Kendziora Fermi National Laboratory CEC-ICMC 2013 Anchorage Alaska – June, 2012.
Towards pulse shape calculation and analysis for the GERDA experiment Kevin Kröninger, MPI für Physik International School of Nuclear Physics, Erice 2005.
B. Majorovits (MPI für Physik) for the collaboration
Overview of GERDA simulation activities with MaGe
Prompt Gamma Activation Analysis on 76Ge
GERDA Collaboration Meeting,
The Heidelberg Dark Matter Search Experiment
Deep learning possibilities for GERDA
Neutrino Telescope Stefan Schönert (TUM)
Munich GERDA/Majorana MC Meeting
Presentation transcript:

Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II: Add new diodes up to 40 kg mass of 76 Ge. Segmentation of detectors. Long-term future (Phase III): World-wide collaboration: O(500 kg) experiment. The GERDA experiment GERDA collaboration The GERDA collaboration Max-Planck-Institut für Kernphysik / Heidelberg European collaboration of the following institutes: INFN Laboratori Nazionali del Gran Sasso, Assergi/Italy Jagellonian University, Cracow/Poland Joint Institute for Nuclear Research, Dubna/Russia Institute for Reference Materials and Measurements (IRMM), Geel/Belgium Max-Planck-Institut für Kernphysik, Heidelberg/Germany Institut für Kernphysik, Universität Köln/Germany Università di Milano Bicocca e INFN Milano, Milano/Italy Institute for Theoretical and Experimental Physics, Moscow/Russia Institute for Nuclear Research of the Russian Academy of Sciences, Moscow/Russia Russian Research Centre Kurchatov Institute, Moscow/Russia Max-Planck-Institut für Physik, München/Germany Physikalisches Institut, Universität Tübingen/Germany forbidden in the standard model (Lepton- number violating process). Only possible if is massive Majorana particle. Signature is peak at Q-value of decay. 4.2  evidence for  -decay reported for 76 Ge (Q-value: 2039 keV): Klapdor-Kleingrothaus et al., NIM A 522 (2004) GERDA design and sensitivity Water tank (Muon-veto) Cryostat Cleanroom Ge-detector array Cryogenic liquid Neutrinoless double beta decay Background reduction and suppression techniques (  also see dedicated posters) Material screening:Cryogenic gas purification  -screening with ultralow background Ge-spectrometers. GeMPI at Gran Sasso reaches few ten  Bq/kg level. Large scale N 2 purification plant at Gran Sasso: 222 Rn in N 2 <0.5  Bq/m 3. Recent result: Ar can be purified to same purity level as N 2. Detector segmentation  -decay is single-side event. Double-side background events can be discriminated by detector segmenation. Phase I activities Prototype detector operationsOpening of enriched detectors Phase I detector array Goal: Spectroscopic performance of the detector assembly in a radon-free test bench: Same resolution achieved for bare crystal as measured in the cryostat. Heidelberg-Moscow detector ANG I IGEX detector RG III 2 76 Ge-diodes have been removed from their cryostat and measured. Both diodes have been refurbished and are stored underground again. R&D project for low background detector operation in liquid argon. Lock Lead Steel Poly- ethylene Copper Liquid argon PMTs Phase II detectors Example: 6  3z segmentation and achieved background reduction for a 60 Co source. The LArGe facility 37 kg of enriched Ge for new 76 Ge diodes already produced in Russia. Segmented, true coaxial n-type detectors. Signal from each segment and core signal are read out separately. Extremely low mass support structure. Special suspension system. First segmented prototype detector successfully operated. Muon-induced background Prompt background (without  -veto) Energy (keV) Anticoincidence (phase I): Segmentation (phase II): 3·10 -4 Counts/kg/keV/y goal no cut: Goal is not achievable without muon-veto. But 75% efficient muon-veto is sufficient. Water Čerenkov veto with light reflector foil (VM2000) is expected to be more efficient. Background in LN 2 [cts/(kg·keV·y)] Background in LAr [cts/(kg·keV·y)] 77,77m Ge1.0 · · Others5 · · Delayed background Background goal cts/(kg·keV·y) can be achieved for LN 2. More neutrons produced in LAr  Background above cts/(kg·keV·y). Goal can be met by delayed coinci- dence cut (muon,  -rays,  -decay). MC simulation Operation of bare 76 Ge diodes in ultrapure cryogenic liquid (LAr/LN 2 ). Contaminations from cryostat/ crystal holder can be avoided. Low mass detector suspension and holder made out of carefully selected materials only. Experiment will be performed in the Gran Sasso underground lab. Assumption:  E=4 keV