CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32 Fuzzy Expert System.

Slides:



Advertisements
Similar presentations
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16: Perceptrons and their computing power 6 th and.
Advertisements

CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 10– Club and Circuit Examples.
AI – CS364 Fuzzy Logic Fuzzy Logic 3 03 rd October 2006 Dr Bogdan L. Vrusias
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 9,10,11- Logic; Deduction Theorem 23/1/09 to 30/1/09.
Fuzzy Inference and Defuzzification
CLASSICAL LOGIC and FUZZY LOGIC. CLASSICAL LOGIC In classical logic, a simple proposition P is a linguistic, or declarative, statement contained within.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16, 17- Completeness Proof; Self References and.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 12- Completeness Proof; Self References and Paradoxes 16 th August,
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 7– Predicate Calculus and Knowledge Representation.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 11– Fuzzy Logic: Inferencing.
CS621: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–3: Some proofs in Fuzzy Sets and Fuzzy Logic 27 th July.
CS344 Artificial Intelligence Prof. Pushpak Bhattacharya Class on 6 Mar 2007.
Fuzzy Logic Control Systems Ken Morgan ENGR 315 December 5, 2001.
ICT619 Intelligent Systems Topic 3: Fuzzy Systems.
ICT619 Intelligent Systems Topic 3: Fuzzy Systems
11 Inverted Pendulum Emily Hamilton ECE Department, University of Minnesota Duluth December 21, 2009 ECE Fall 2009.
WELCOME TO THE WORLD OF FUZZY SYSTEMS. DEFINITION Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept.
Ming-Feng Yeh General Fuzzy Systems A fuzzy system is a static nonlinear mapping between its inputs and outputs (i.e., it is not a dynamic system).
Fuzzy Logic Dave Saad CS498. Origin Proposed as a mathematical model similar to traditional set theory but with the possibility of partial set membership.
CS621: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–4: Fuzzy Inferencing 29 th July 2010.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–2: Fuzzy Logic and Inferencing.
CS621: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–1: Introduction 22 nd July 2010.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 21- Forward Probabilities and Robotic Action Sequences.
Fuzzy Inference (Expert) System
Reasoning in Uncertain Situations
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 28– Interpretation; Herbrand Interpertation 30 th Sept, 2010.
Ming-Feng Yeh Fuzzy Control The primary goal of control engineering is to distill and apply knowledge about how to control a process so that the.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 30 Uncertainty, Fuizziness.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 12- Completeness Proof; Self References and Paradoxes 16 th August,
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM]
Lógica difusa  Bayesian updating and certainty theory are techniques for handling the uncertainty that arises, or is assumed to arise, from statistical.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–4: Fuzzy Control of Inverted.
Fuzzy Sets and Control. Fuzzy Logic The definition of Fuzzy logic is a form of multi-valued logic derived frommulti-valued logic fuzzy setfuzzy set theory.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–3: Fuzzy Inferencing: Inverted.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 38: Fuzzy Logic.
PART 9 Fuzzy Systems 1. Fuzzy controllers 2. Fuzzy systems and NNs 3. Fuzzy neural networks 4. Fuzzy Automata 5. Fuzzy dynamic systems FUZZY SETS AND FUZZY.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–7: (a) Formal System;(b) How to read research papers 3 rd August, 2010.
Prof. Pushpak Bhattacharyya, IIT Bombay 1 CS 621 Artificial Intelligence Lecture /08/05 Prof. Pushpak Bhattacharyya Fuzzy Set (contd) Fuzzy.
Fuzzy Inference and Reasoning
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 9- Completeness proof; introducing knowledge representation.
Lecture 32 Fuzzy Set Theory (4)
Chapter 19. Fuzzy Reasoning
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: AI, Logic, and Puzzle Solving.
Could Be Significant.
Prof. Pushpak Bhattacharyya, IIT Bombay 1 CS 621 Artificial Intelligence Lecture 5 – 08/08/05 Prof. Pushpak Bhattacharyya FUZZY LOGIC & INFERENCING.
Prof. Pushpak Bhattacharyya, IIT Bombay 1 CS 621 Artificial Intelligence Lecture /08/05 Prof. Pushpak Bhattacharyya Fuzzy Logic Application.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 35–Himalayan Club example; introducing Prolog.
Prof. Pushpak Bhattacharyya, IIT Bombay 1 CS 621 Artificial Intelligence Lecture 16 – 09/09/05 Prof. Pushpak Bhattacharyya Soundness, Completeness,
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–10: Soundness of Propositional Calculus 12 th August, 2010.
Prof. Pushpak Bhattacharyya, IIT Bombay1 CS 621 Artificial Intelligence Lecture /08/05 Prof. Pushpak Bhattacharyya Fuzzy Inferencing.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 4- Logic.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–6: Propositional calculus, Semantic Tableau, formal System 2 nd August,
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 10– Uncertainty: Fuzzy Logic.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5- Deduction Theorem.
CS621: Artificial Intelligence
CS621: Introduction to Artificial Intelligence
Artificial Intelligence
Homework 8 Min Max “Temperature is low” AND “Temperature is middle”
Fuzzy logic Introduction 3 Fuzzy Inference Aleksandar Rakić
CLASSICAL LOGIC and FUZZY LOGIC
CS621: Artificial Intelligence
Homework 9 Min Max “Temperature is low” AND “Temperature is middle”
CS 621 Artificial Intelligence Lecture 4 – 05/08/05
Fuzzy Logic Controller for the Inverted Pendulum Problem .
Fuzzy Inferencing – Inverted Pendulum Problem
CS621: Artificial Intelligence
CS621 : Artificial Intelligence
CS621: Artificial Intelligence
CS344 : Introduction to Artificial Intelligence
Chapter 19. Fuzzy Reasoning
Presentation transcript:

CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32 Fuzzy Expert System

Lukasiewitz formula for Fuzzy Implication t(P) = truth value of a proposition/predicate. In fuzzy logic t(P) = [0,1] t( ) = min[1,1 -t(P)+t(Q)] Lukasiewitz definition of implication

Fuzzy Inferencing Two methods of inferencing in classical logic – Modus Ponens Given p and p  q, infer q – Modus Tolens Given ~q and p  q, infer ~p How is fuzzy inferencing done?

Classical Modus Ponens in tems of truth values Given t(p)=1 and t(p  q)=1, infer t(q)=1 In fuzzy logic, – given t(p)>=a, 0<=a<=1 – and t(p  >q)=c, 0<=c<=1 – What is t(q) How much of truth is transferred over the channel pq

Use Lukasiewitz definition t(p  q) = min[1,1 -t(p)+t(q)] We have t(p->q)=c, i.e., min[1,1 -t(p)+t(q)]=c Case 1: c=1 gives 1 -t(p)+t(q)>=1, i.e., t(q)>=a Otherwise, 1 -t(p)+t(q)=c, i.e., t(q)>=c+a-1 Combining, t(q)=max(0,a+c-1) This is the amount of truth transferred over the channel p  q

Eg: If pressure is high then Volume is low Pressure/ Volume High Pressure ANDING of Clauses on the LHS of implication Low Volume

Fuzzy Inferencing Core The Lukasiewitz rule t( ) = min[1,1 + t(P) – t(Q)] An example Controlling an inverted pendulum θ = angular velocity Motor i=current

The goal: To keep the pendulum in vertical position (θ=0) in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current ‘i’ Controlling factors for appropriate current Angle θ, Angular velocity θ. Some intuitive rules If θ is +ve small and θ. is –ve small then current is zero If θ is +ve small and θ. is +ve small then current is –ve medium

-ve med -ve small Zero +ve small +ve med -ve med -ve small Zero +ve small +ve med +ve small -ve small -ve med -ve small +ve small Zero Region of interest Control Matrix θ.θ. θ

Each cell is a rule of the form If θ is <> and θ. is <> then i is <> 4 “Centre rules” 1.if θ = = Zero and θ. = = Zero then i = Zero 2.if θ is +ve small and θ. = = Zero then i is –ve small 3.if θ is –ve small and θ. = = Zero then i is +ve small 4.if θ = = Zero and θ. is +ve small then i is –ve small 5. if θ = = Zero and θ. is –ve small then i is +ve small

Linguistic variables 1.Zero 2.+ve small 3.-ve small Profiles -ε-ε+ε+ε ε2 ε2 -ε2-ε2 -ε3-ε3 ε3ε3 +ve small -ve small 1 Quantity (θ, θ., i) zero

Inference procedure 1.Read actual numerical values of θ and θ. 2.Get the corresponding μ values μ Zero, μ (+ve small), μ (-ve small). This is called FUZZIFICATION 3.For different rules, get the fuzzy I-values from the R.H.S of the rules. 4.“ Collate ” by some method and get ONE current value. This is called DEFUZZIFICATION 5.Result is one numerical value of ‘ i ’.

if θ is Zero and dθ/dt is Zero then i is Zero if θ is Zero and dθ/dt is +ve small then i is –ve small if θ is +ve small and dθ/dt is Zero then i is –ve small if θ +ve small and dθ/dt is +ve small then i is -ve medium -ε-ε+ε+ε ε2 ε2 -ε2-ε2 -ε3-ε3 ε3ε3 +ve small -ve small 1 Quantity (θ, θ., i) zero Rules Involved

Suppose θ is 1 radian and dθ/dt is 1 rad/sec μ zero (θ =1)=0.8 (say) Μ +ve-small (θ =1)=0.4 (say) μ zero (dθ/dt =1)=0.3 (say) μ +ve-small (dθ/dt =1)=0.7 (say) -ε-ε+ε+ε ε2 ε2 -ε2-ε2 -ε3-ε3 ε3ε3 +ve small -ve small 1 Quantity (θ, θ., i) zero Fuzzification 1rad 1 rad/sec

Suppose θ is 1 radian and dθ/dt is 1 rad/sec μ zero (θ =1)=0.8 (say) μ +ve-small (θ =1)=0.4 (say) μ zero (dθ/dt =1)=0.3 (say) μ +ve-small (dθ/dt =1)=0.7 (say) Fuzzification if θ is Zero and dθ/dt is Zero then i is Zero min(0.8, 0.3)=0.3 hence μ zero (i)=0.3 if θ is Zero and dθ/dt is +ve small then i is –ve small min(0.8, 0.7)=0.7 hence μ -ve-small (i)=0.7 if θ is +ve small and dθ/dt is Zero then i is –ve small min(0.4, 0.3)=0.3 hence μ-ve-small(i)=0.3 if θ +ve small and dθ/dt is +ve small then i is -ve medium min(0.4, 0.7)=0.4 hence μ -ve-medium (i)=0.4

-ε-ε+ε+ε -ε2-ε2 -ε3-ε3 -ve small 1 zero Finding i Possible candidates: i=0.5 and -0.5 from the “zero” profile and μ=0.3 i=-0.1 and -2.5 from the “-ve-small” profile and μ=0.3 i=-1.7 and -4.1 from the “-ve-small” profile and μ= ve small -ve medium 0.7

-ε-ε+ε+ε -ve small zero Defuzzification: Finding i by the centroid method Possible candidates: i is the x-coord of the centroid of the areas given buy the blue trapezium, the green trapeziums and the black trapezium ve medium Required i value Centroid of three trapezoids