Открытые вопросы в динамике охлаждённых пучков Unsolved problems at the dynamic of the cooled beams IX Международный семинар по проблемам ускорителей заряженных.

Slides:



Advertisements
Similar presentations
Measurements of adiabatic dual rf capture in the SIS 18 O. Chorniy.
Advertisements

Linacs hall 300 MeV driving electron linac Positron linac.
Proton / Muon Bunch Numbers, Repetition Rate, RF and Kicker Systems and Inductive Wall Fields for the Rings of a Neutrino Factory G H Rees, RAL.
Linear Collider Bunch Compressors Andy Wolski Lawrence Berkeley National Laboratory USPAS Santa Barbara, June 2003.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #8.
Damping ring K. Ohmi LC Layout Single tunnel Circumference 6.7 km Energy 5 GeV 2 km 35 km.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
ALPHA Storage Ring Indiana University Xiaoying Pang.
Sergey Antipov, University of Chicago Fermilab Mentor: Sergei Nagaitsev Injection to IOTA ring.
STRIPLINE KICKER STATUS. PRESENTATION OUTLINE 1.Design of a stripline kicker for beam injection in DAFNE storage rings. 2.HV tests and RF measurements.
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Source Group Bethan Dorman Paul Morris Laura Carroll Anthony Green Miriam Dowle Christopher Beach Sazlin Abdul Ghani Nicholas Torr.
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
2002/7/02 College, London Muon Phase Rotation at PRISM FFAG Akira SATO Osaka University.
2002/7/04 College, London Beam Dynamics Studies of FFAG Akira SATO Osaka University.
MEIC Electron Cooler Design Concept. EC potential impact to colliders Reaching a high start luminosity Very short i-bunches achieved by longitudinal cooling.
Research in Particle Beam Physics and Accelerator Technology of the Collaboration IKP Forschungszentrum Jülich & JINR A.N. Parfenov for the Collaboration.
Details of space charge calculations for J-PARC rings.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Diagnostics for intense e-cooled ion beams by Vsevolod Kamerdzhiev Forschungszentrum Jülich, IKP, COSY ICFA-HB2004, Bensheim, October 19, 2004.
Oliver Boine-Frankenheim, High Current Beam Physics Group Simulation of space charge and impedance effects Funded through the EU-design study ‘DIRACsecondary.
Electron Beam As High Frequency Wide Band Electrostatic 3D Kicker A. Ivanov*, V. Parkhomchuk, V. Reva Budker Institute of Nuclear Physics NANOBEAM-2008.
#1 Energy matching It is observed that the orbit of an injected proton beam is horizontally displaced towards the outside of the ring, by about  x~1 mm.
One-Dimensional Ordering in High-Energy Ion Beams Håkan Danared Manne Siegbahn Laboratory CERN 8 December 2008.
Beam loss and longitudinal emittance growth in SIS M. Kirk I. Hofmann, O. Boine-Frankenheim, P. Spiller, P. Hülsmann, G. Franchetti, H. Damerau, H. Günter.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
Paul Derwent 14 Dec 00 1 Stochastic Cooling Paul Derwent 14 Dec 00
1 Simulations of fast-ion instability in ILC damping ring 12 April ECLOUD 07 workshop Eun-San Kim (KNU) Kazuhito Ohmi (KEK)
Overview of Booster PIP II upgrades and plans C.Y. Tan for Proton Source group PIP II Collaboration Meeting 03 June 2014.
Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school.
Beam breakup and emittance growth in CLIC drive beam TW buncher Hamed Shaker School of Particles and Accelerators, IPM.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
Imperial College London 1 6. Injection into and ejection from circular machines PREACCELERATOR ACCUMULATORRING PARTICLESOURCE INJECTION 1 EJECTION INJECTION.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
CERN F. Ruggiero Univ. “La Sapienza”, Rome, 20–24 March 2006 Measurements, ideas, curiosities beam diagnostics and fundamental limitations to the performance.
Crossing transition at RHIC V.Ptitsyn, N.Abreu, M. Brennan, M.Blaskiewicz, W. Fischer, C. Montag, R. Lee, S.Tepikian.
PSB H- injection concept J.Borburgh, C.Bracco, C.Carli, B.Goddard, M.Hourican, B.Mikulec, W.Weterings,
Robert R. Wilson Prize Talk John Peoples April APS Meeting: February 14,
Beam loss and radiation in the SPS for higher intensities and injection energy G. Arduini 20 th November 2007 Acknowledgments: E. Shaposhnikova and all.
1 Update on Ion Studies Guoxing Xia, Eckhard Elsen ILC2007 Workshop, May 30~Jun 2, 2007 DESY, Hamburg.
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
Pushing the space charge limit in the CERN LHC injectors H. Bartosik for the CERN space charge team with contributions from S. Gilardoni, A. Huschauer,
RF manipulations in SIS 18 and SIS 100 O. Chorniy.
Beam Dynamics in Electron Storage Ring
HIAF Electron Cooling System &
Simulation of Luminosity Variation
Injector Cyclotron for a Medical FFAG
“Electron cooling device in the project NESR (FAIR)"
Wakefield Accelerator
Overview Multi Bunch Beam Dynamics at XFEL
The LHC25ns cycle in the PS Triple splitting after 2nd injection
CEPC Injector Damping Ring
Transverse emittance measurements
I-LHC NOMINAL ions beam in 2007
Summary of Beam Cooling Parallel Session
PEPX-type BAPS Lattice Design and Beam Dynamics Optimization
Injection design of CEPC
He Zhang MEIC R&D Meeting, 07/09/2015
JLEIC ion fullsize booster (2256m) space charge limit (Δν=0
Update on ERL Cooler Design Studies
Fast kicker beam dynamics simulations
Pulsed electron beam cooling experiments: data & preliminary results
Cooling of C6+ ion beam with pulsed electron beam
SC Magnets with Small Apertures for JLEIC*
Optimization of JLEIC Integrated Luminosity Without On-Energy Cooling*
Presentation transcript:

Открытые вопросы в динамике охлаждённых пучков Unsolved problems at the dynamic of the cooled beams IX Международный семинар по проблемам ускорителей заряженных частиц памяти В.П.Саранцева, сентября 2011, Алушта, Украина Пархомчук В.В. ИЯФ СОРАН, Новосибирск

NAP-M storage ring pioneer of the storage rings with electron cooling CELSIUS cooler CSRe cooler CSRm cooler LEIR cooler Coolers photo: The electron cooling experiments was made at this coolers and will used for discussion at this report

incoming Ion beam Exit Ion beam Cooling sections

Coherent dumping Single particle cooling rate The cooling rate of the fluctuation with N number of ion. cooling time single ion 1 sec cooling time for micro bunch with N=1.0E6 1 micro sec.

Sketch of Mg jet profile meter Measuring the ion beam density at the center of beam versus time. Initially high (but negative) signal of cooled beam after kick close to 0 signal of wide profile and then cooling with returning to almost the same density

Without cooling linear increasing radius of the ion beam proportional of the amplitude of the kicker voltage/ But with the electron cooling on the radius after kick few times less!

For small proton current the amplitude return to value close to radius without cooling Влияние протонного тока на амплитуду раскачки после удара инфлектором 5 кВ. Протонный ток именялся от 55 мкА до, примерно, 1 мкА, а амплитуда от 2 мм до 5 мм.

The phase space the ion beam after coherent kick. We can see the de coherent motion with decay average and signal. Landay damping

Coherent motion emittance decreased by mixing without coherent damping Single particle emittance are constant But if coherent motion are cooled faster then mixing the rest single particle emittance decreased.

The fast electron beam energy modulation increased momentum spread of ion beam and the ion beam radius increased by more fast decoherence the ions oscillations. For Амплитуда колебаний в зависимости от амплитуды модуляции продольной скорости электронного пучка. Ep=65 MeV, Je=400 mA.

The intensity of the proton beam versus time with cooling and without cooling. As easy to see the first stage decay not change exist cooling or not exist (detune energy electron beam).

But decreasing initial intensity ion beam lead to absent initial fast decay..

LEIR accumulation Pb+54 Positive influence the ion beam Inteancity. More intensive ion beam cooled faster. Initial hot ion beam after mixion with coled ion beam becames by Intra Beam Scatering more cool and more easy cooled by the electron cooling At figure time increase down and between marks interval 1 s. The horizontaly the ion beam aperture 50 mm. Red painting is the electon beam profile for coolong.

Рис.7. Прямое наблюдение сигналов на пикапе при группировке 200 МэВ/н при электронном охлаждении. Показаны первые 700 сек охлаждения, во время которых наблюдаются образование нескольких паразитных сгустков и довольно быстрые потери пучка. The bunching carbon beam at CSRe After injection on energy 200 MeV/u. Initially un bunching beam produce A many small micro bunches together with Forming main bunch.

The history of the bunched electron cooling 200 MeV/u carbon beam at CSRe. At initial moomnt we can see fast decay intensity. But after decrease peak current 2.5 mA the life times increased up to 1000 sec.

At initial cooling clear see micro structure of the ion beam current

But after final cooling all parasitic bunches disappeared. Maximal peak current near 3 mA. Clear see the tail of the ion bunch.

The intensity of the ion beam high for strong compensation accelerated RF field.

The pulse width is 10ms. The intervals related to left and right panel are 80ms and 100ms, respectively.” The ion beam intensity vs. time for the pulse height of 100V (best lifetime), 200V and 400V (worst lifetime), respectively. The pulse width is 20ms and the interval between two pulses is 100ms. The vertical axis is logarithmic. The dash line connected the beginning and the end of the data for the pulse height of 400V is for reference. Working with detune (partially) Electron beam date was sended to me From IMP Lanzow colleges 11 Sept.

The plasma model of the electron cooling Coherent oscillation

Заключение Как показывают многочисленные измерения пучков с электронным охлаждением, эффекты интенсивности могут существенно улучшить или ухудшить свойства ионного пучка. При использовании электронного охлаждения очень важно иметь это в виду и стараться создавать условия, когда эти особенности помогают решить поставленную задачу. Взаимодействие ионного и электронного пучков еще плохо изучено с точки зрения когерентной устойчивости и ждет приложения усилий для дальнейшего развития методов охлаждения.