Recent Energy Deposition Simulations TCSM-A6L7 L. Keller LARP Video Mtg. 02 Oct. 2006.

Slides:



Advertisements
Similar presentations
Wire scanners MDW chicane energy collimator 3 MPS collimators in this region end of linac Damage Simulation in MPS Collimators L. Keller Apr. 9, 2006.
Advertisements

Joanne Beebe-Wang 7/27/11 1 SR in eRHIC IR Synchrotron Radiation in eRHIC IR and Detector Background Joanne Beebe-Wang Brookhaven National Laboratory 10/
HESSI’s Imaging Process. The HESSI satellite, due for launch in the Fall of 2001, ha.
Collimator Damage Adriana Bungau The University of Manchester Cockcroft Institute “All Hands Meeting”, January 2006.
Status of the LARP Phase II Secondary Collimator Prototype 30 September 2013 LHC Collimation WG Meeting Tom Markiewicz/SLAC BNL - FNAL- LBNL - SLAC US.
CLIC collimator survival IWLC 2010 J.L. Fernández-Hernando – ASTeC/Cockcroft Institute (Daresbury Lab.) 21/10/2010 J.L. Fernández-HernandoASTeC/CI21/10/2010.
BLM thresholds for MQW magnets V. Raginel, B. Auchmann, D. Wollmann BLM Threshold Working Group meeting, 24/02/2015.
Status of the LARP Phase II Secondary Collimator Prototype 14 October 2013 LHC Collimation WG Meeting Tom Markiewicz/SLAC BNL - FNAL- LBNL - SLAC US LHC.
GRD - Collimation Simulation with SIXTRACK - MIB WG - October 2005 LHC COLLIMATION SYSTEM STUDIES USING SIXTRACK Ralph Assmann, Stefano Redaelli, Guillaume.
LARP Rotatable Collimators for LHC Phase II Collimation 26 October 2006 LARP Collaboration Meeting – Port Jefferson, NY Tom Markiewicz/SLAC Representing.
Beam LARP Rotatable Collimator Mechanical Engineering Discussion 03 October 2008 Phase II CERN ME Video Mtg. Tom Markiewicz/SLAC BNL - FNAL- LBNL - SLAC.
LARP Rotatable Collimators for LHC Phase II Collimation 26 October 2006 LARP Collaboration Meeting – Port Jefferson, NY Tom Markiewicz/SLAC Representing.
Status of Phase II Energy Loss Studies 1. FLUKA with “simple” CERN-provided input file modeling ~40m around primary collimators used for all SLAC studies.
Estimation of temperature increase in the dump through Monte – Carlo simulations and rough calculations N. Charitonidis (EN/MEF)
LER Workshop, CERN, October 11-12, 2006Detector Safety with LER - Henryk Piekarz1 LHC Accelerator Research Program bnl-fnal-lbnl-slac Accelerator & Detector.
1 Energy Deposition of 4MW Beam Power in a Mercury Jet Target X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL The International Design Study for the.
TCDIM François-Xavier Nuiry September 16 th 2015.
Beam Background Simulations for HL-LHC at IR1 Regina Kwee-Hinzmann, R.Bruce, A.Lechner, N.V.Shetty, L.S.Esposito, F.Cerutti, G.Bregliozzi, R.Kersevan,
DS Heat Load Scenarios in Collision Points and Cleaning Insertions. Prepared by F. Cerutti, A.Lechner and G. Steele on behalf of the FLUKA team (EN-STI)
August 7, 2003K. Chow, LHC Luminosity Detector Thermal Analysis1 Analysis cases Approach: Start simple to get information— with speed with confidence that.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
Updates on FLUKA simulations of TCDQ halo loads at IR6 FLUKA team & B. Goddard LHC Collimation Working Group March 5 th, 2007.
10 mm depth 16 mm depth BEFORE AFTER. TiTi alloyDiff. % 2 mm10 mm16 mm2 mm10 mm16 mm Adriana GEANT ~7% Luis FLUKA ~10.
Collimator and beamline heating External Review of the LHC Collimation Project CERN Wed 30/6/2004.
Accelerator Science and Technology Centre POST-LINAC BEAM TRANSPORT AND COLLIMATION FOR THE UK’S NEW LIGHT SOURCE PROJECT D. Angal-Kalinin,
1 LARP Collimator Engineering E. Doyle 2/3/05. 2 Review: SS Thermal Simulation 150mm OD 25mm wall Simply supported Heat: 1hr beam life, FLUKA results,
Recent Studies on ILC BDS and MERIT S. Striganov APD meeting, January 24.
Opacity Correction (1/20/09) Schumacher, Ovchinnikov Materials: Copper (1/e absoption length taken as 22  ), Aluminum (72.4  ). Targets: Slab sandwich,
LARP Coll. Video-conf. May 12, '05Phase II Collimator Engineering - E. Doyle1/20 Adapting the NLC Consumable Collimator to LHC Phase II Secondary Collimation.
AWAKE: D2E for Alexey beam properties Silvia Cipiccia, Eduard Feldbaumer, Helmut Vincke DGS/RP.
Phase II Collimators for LHC Upgrade at SLAC - Material Issues E. Doyle 03 Sept /25 Workshop on Materials for Collimators CERN 2007/09/03 Phase.
1 February 07, 2008 Simulation Status of Mercury Jet Target HeeJin Park.
LARP Rotatable Collimators 19 June 2006 ILC R&D Status Meeting Tom Markiewicz/SLAC BNL - FNAL- LBNL - SLAC US LHC Accelerator Research Program.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
DRAFT Simulation of Errant Beams in the BDS How many bunches will damage beamline components or quench SC coils? Analysis Steps 1.Use TRANSPORT with BDS.
LARP LHC PHASE II COLL RC1 TESTS - S. Lundgren 10 Dec 2007 No 1 /12 LARP Phase II Secondary Collimator RC1 Collimator Development and Test Program Status.
MDI Simulations at SLAC Takashi Maruyama, Lew Keller, Thomas Markiewicz, Uli Wienands, SLAC MAP Collaboration Meeting, FNAL June 21, 2013.
N_TOF EAR-1 Simulations The “γ-flash” A. Tsinganis (CERN/NTUA), C. Guerrero (CERN), V. Vlachoudis (CERN) n_TOF Annual Collaboration Meeting Lisbon, December.
accident deformation – doyle 1/12 Phase II Collimator - Accident Deformation Simulation December 11, 2006.
Fluka Simulations: Electron spectrometer window for AWAKE Jose A. Briz and V. Vlachoudis.
General overview, layout of the pbar separator Target handling concept FLUKA calculations - for the target station - for the shielding flask Status of.
Preliminary ANSYS Studies for Tungsten Collimators
Background simulations: update and simulations of absorbed dose
LARP Collimation – Engineering & Analysis
Positron production rate vs incident electron beam energy for a tungsten target
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Problem: A kicker failure can deposit 9 x 1011 protons on any metallic
WP3 status Interaction Region design
Recycling Metals Metals-5-1.
Thermo-mechanical simulations jaws + tank
Federico Carra – EN-MME
2th EuCard Col/Mat WP Meeting
Recycling Metals Metals-5-1.
Recommendations of 12/16/05 review committee & SLAC response
LARP Collimation – Engineering & Analysis
23 April 2012 Tom Markiewicz/SLAC
LARP Phase II Secondary Collimator RC1
accident deformation – doyle (rev1) 1/8
LARP Phase II Secondary Rotatable Collimator
Optic design and performance evaluation for SPPC collimation systems
Discussion of High Energy Proton Losses in Arc 7
US LHC Accelerator Research Program
Direct Hits on Titanium Alloy Spoilers
RC1 Prototype Conceptual Design Review 15 December, 2005
Engineering Update E. Doyle 5/16/06
US LHC Accelerator Research Program
Four Jaw Collimator.
Standard SLAC BSY Copper Protection Collimator Rated at 20 kW
accident deformation – doyle 1/8
Phase II Collimator, Alternative Jaw Simulations
Presentation transcript:

Recent Energy Deposition Simulations TCSM-A6L7 L. Keller LARP Video Mtg. 02 Oct. 2006

Simple FLUKA Cylinder, Shaft, Bearing Model ceramic bearing Molybdenum shaft: R = cm bearing axle Copper cylinder + cooling loops: R = 3.3 – 6.8 CM, Z = 95 CM beam axis

Axial Power Distribution in TCSM-A6L7 Copper Jaw and Molybdenum Shaft Halo on TCPH, 1 hour beam lifetime Ave. = 13.5 kW/jaw Ave. = 530 W/shaft high energy side - photons from TCPH?

Azimthal Power Distribution in TCSM-A6L7 Copper Jaw and Molybdenum Shaft Halo on TCPH, 1 hour beam lifetime FWHM ≈ 20º FWHM ≈ 60º

Azimthal Power Distribution in TCSM-A6L7 Ceramic Bearing and Axle (back end) Halo on TCPH, 1 hour beam lifetime Ave. = 0.77 W Ave. = 2.7 W

Results for TCSM-A6L7 at 7 Sigma Total power deposition Copper jaws Molybdenum shaft Axial Al struts Front Al image-current block Rear Al image-current block Front ceramic bearing Rear ceramic bearing Front steel bearing spindle Rear steel bearing spindle 13,500 W 530 W 70 W 35 W 90 W 0.1 W 0.8 W 0.5 W 2.7 W Halo on TCPH, 1 hour beam lifetime

Accident Energy Deposition in Down-beam Aluminum Image-Current Block Total E dep ≈ 3 kJ ΔT max < 100 °C in the image current block Two accident conditions: 1.All bunches hit the front of the collimator: σ x 2.Grazing angle along collimator edge: at 50 µrad grazing angle and 200µ σ x, only about 15% of the beam hits along the edge Alum. 1 MJ of bunches hitting edge, 7-10  Alum. image current block