"Static" steering correction on the DB Quadrupoles Alexey Vorozhtsov 14 Dec 2010.

Slides:



Advertisements
Similar presentations
D2 conceptual design and field quality optimization Ramesh Gupta, BNL Slide No. 1 Nov. 13, 2013 D2 Conceptual Design and Field Quality.
Advertisements

HL-LHC Corrector Magnet 3D design status Giovanni Volpini on behalf of the LASA team CERN, February 25, 2014.
Magnets for the ESRF upgrade phase II
Quadrupole Magnetic Design for an Electron Ion Collider Paul Brindza May 19, 2008.
Magnet designs for the ESRF-SR2
Electricity & Magnetism Static, Currents, Circuits Magnetic Fields & Electro Magnets Motors & Generators.
1 M. Modena for the CLIC MDI magnet study Team (A. Aloev, P. Thonet, E. Solodko, A. Vorozhtsov) CLIC MDI Meeting,16 January 2015.
Powered Magnets, DB Formation and Decelerator Alexey Vorozhtsov (JINR) International Workshop on Linear Colliders October 2010.
Magnet designs for Super-FRS and CR
Electricity & Magnetism Static, Currents, Circuits Magnetic Fields & Electro Magnets Motors & Generators.
SIS 100 main magnets G. Moritz, GSI Darmstadt (for E. Fischer, MT-20 4V07)) Cryogenic Expert Meeting, GSI, September 19/
September 19/20, 2007 SIS 100 Magnet cooling and cryogenic distribution.
Author CERN – Geneva – CH Jacques.Dutour 14th International Magnetic Measurement Workshop September 2005, Geneva, Switzerland 1 / 16 MQW magnets:
Drive beam magnets powering strategy Serge Pittet, Daniel Siemaszko CERN, Electronic Power Converter Group (TE-EPC) OUTLINE : Suggestion of.
Options for Final Focusing Quadrupoles Michele Modena CERN TE-MSC Many thanks for the contributions of: J. Garcia Perez, H. Gerwig, C. Lopez, C. Petrone,
Status of: CLIC Two-Beam Module Magnets R&D and Procurement 1 Michele Modena, CERN TE-MSC IWLC10, WG8, 21October 2010.
Scientific support Scientific laboratories have the qualified specialists in fields of accelerator physics and technique. They calculate and model the.
Permanent Magnet Quadrupoles for the CLIC Drive Beam Jim Clarke, Norbert Collomb, Neil Marks, James Richmond, and Ben Shepherd STFC Daresbury Laboratory,
LHC IR UPGRADE - PHASE I CORRECTOR STATUS UPDATE N. Dalexandro, N. Elias, M. Karppinen, J. Mazet, J-C. Perez, D. Smekens, G. Trachez 03/02/10M. Karppinen.
Magnetic Design S. Prestemon, D. Arbelaez, S. Myers, R. Oort, M. Morsch, E. Rochepault, H. Pan, T. Ki, R. Schlueter (LBNL) Superconducting Undulator Integrated.
CLIC Workshop th -17 th October 2008 Thomas Zickler AT/MCS/MNC 1 CLIC Main Linac Quadrupoles Preliminary design of a quadrupole for the stabilization.
Proposed Conventional Sextupole for Installation at A0 Introduction (Dean Still) Reasons for installation- Reduce I in S6 feeddown sextupole circuit at.
Consolidation of the Booster Injection Quadrupole Magnets (part 2) A. Aloev 14 th February 2013.
Electric Energy Notes.
XFEL X-Ray Free-Electron Laser Bernward Krause MEA WP-12: Warm Magnets WPL: B. Krause.
CLIC Stabilisation Day’08 18 th March 2008 Thomas Zickler AT/MCS/MNC/tz 1 CLIC Quadrupoles Th. Zickler CERN.
CLIC requirements on Warm Magnets (for CLIC Modules mainly) 1 M. Modena, CERN TE-MSC 13 April 2011 CERN-UK Collaboration Kick-off Meeting.
Artwork: S. Kimball. The CLIC Drive Beam The drive beam decelerates from 2.4 GeV to 0.24 GeV transferring energy to the main beam As the electrons decelerate,
Correctors magnets V. Zubko, IHEP, Protvino SIS 300 Pre-consortium Meeting Thursday 19 March 2009, Protvino.
Electricity & Magnetism Static, Currents, Circuits Magnetic Fields & Electro Magnets Motors & Generators.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
Linac4 Tech. Design Committee 10 th October 2006 Thomas Zickler AT/MEL/MI/tz 1 Magnets for Linac4 Th. Zickler CERN 6 th Linac4 Technical Design Committee.
Linac4 MAC 29 th January 2008 Thomas Zickler AT/MCS/MNC/tz 1 Magnets for Linac4 Th. Zickler CERN Linac4 Machine Advisory Committee 28 th - 30 th January.
IR Magnets for Muon Collider Alexander Zlobin and Vadim Kashikhin Muon Collider Physics Workshop, Fermilab November 12, 2009.
DDBA magnets Chris Bailey Low emittance rings Sept Frascati.
Yingshun Zhu Design of Small Aperture Quadrupole Magnet for HEPS-TF
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.
Static Electricity build up surface The build up of an electric charge on the surface of an object. does not flow. The charge builds up but does not flow.
New Magnet Design for FCC- ee Attilio Milanese, CERN 26 Oct presented by Frank Zimmermann.
WP15.4 Status March 2017.
A new QF1 magnet for ATF3 Alexey Vorozhtsov
Iranian Light Source Facility, IPM, P.O. Box , Tehran, Iran
Yingshun Zhu Accelerator Center, Magnet Group
One plane dipole corrector for the CLIC MBQ TYPE 1
Some Design Considerations and R &D of CEPCB Dipole Magnet
Test of a Permanent Magnet Quadrupole Placed in a Dipole Field
Procurement, Measurement and Installation of 2 Octupoles for ATF
Warm magnets for LHeC / Test Facility arcs
6th BINP-FAIR-GSI Workshop,
The design schemes of the low field dipole magnets
Alexander Kalimov, State Polytechnic University, St.-Petersburg
Development of the Canted Cosine Theta Superconducting Magnet
EFREMOV INSTITUTE SAINT PETERSBURG RUSSIA
Arc magnet designs Attilio Milanese 13 Oct. 2016
CHEN, Fusan KANG, Wen November 5, 2017
Main magnets for PERLE Test Facility
Yingshun Zhu Accelerator Center, Magnet Group
Compact and Low Consumption Magnet Design The DESY Experience
Electricity & Magnetism
Electricity & Magnetism
Electricity & Magnetism
PERMANENT MAGNET QUADRUPOLE FOR THE LINAC 4 CCDTL
Electricity & Magnetism
Conceptual design of superconducting correctors for Hi-Lumi Project (v2) F. Toral - CIEMAT CIEMAT, March 7th, 2013.
J. García, F. Toral (CIEMAT) P. Fessia (CERN)
CEPC Collider Magnets CHEN, Fusan November 13, 2018.
CEPC Final Focus Superconducting Quadrupole and Anti-solenoid Magnets
CEPC Booster Ring Magnets
Linear beam dynamics simulations for XFEL beam distribution system
Electricity & Magnetism
Presentation transcript:

"Static" steering correction on the DB Quadrupoles Alexey Vorozhtsov 14 Dec 2010

DB QUAD parameters Alexey Vorozhtsov2 CLIC DB Quadrupole Parameters Units MAGNET Magnet size H×S×L[mm×mm×mm]390×390×286 Magnet mass[kg]149.2 Full aperture[mm]26 Good field region(GFR) diameter [mm]11×2=22 YOKE Yoke size H×S×L[mm×mm×mm]390×390×180 Yoke mass[kg]29.4×4=117.6 COIL Hollow Conductor size[mm]6×6, Ø=3.5 Number of turns per coil52 Total conductor mass[kg]31.6 Operation mode 10% of nominalNominal120% of nominal Effective length[mm] Gradient at Z=0[T/m] Integrated gradient ∫Gdl[T] Integrated gradient quality in GFR % Electrical parameters Ampere turns per pole[A] Current[A] Current density[A/mm 2 ] Total resistance[mOhm]99 Total inductance[mH]40 Voltage[V] Power[kW] COOLING Air (natural convection) Water Cooling circuits per magnet 44 coolant velocity[m/s] cooling flow per circuit[l/min] Pressure drop[bar] Reynolds number Temperature rise[K]510 IWLC10, WG6, 10/20/2010

Steerer for DBQ Parameters for CLIC DB Steerer ParameterUnit Integrated field ∫Bdz12[mTm] Magnetic length195[mm] Field at center B(0)0.062[T] Ampere-turns per pole600[A] Number of turns per coil6 Current100[A] Steerer coil Quadrupole coil

Opera 2D 180deg model Quadrupole only, IW=4900[A], -for nominal ∫Gdz=12.18[T]

Opera 2D 180deg model Corrector only, IW=600[A], B1=0.062[T], ∫Bdz=12[mTm] Field error =50% at GFR=11[mm] Sextupole component B3 w.r.t. B1(main): B3/B1=50%

Opera 2D 180deg model Quadrupole +Corrector, IwCorr=600[A], IwQuad=4900[A] Non symmetrical field distribution due to the iron saturation. Dipole field decreased from 0.062T to 0.045[T] (Iron saturation) Full spectrum of “forbidden” harmonics in quadrupole : B3,B5… Non symmetrical field distribution(Iron saturation)

Opera 2D 180deg model Quadrupole +Corrector, IwCorr=60[A], IwQuad=430[A] (10% of nominal)

Drive Beam Quadrupole for CLEX Energy120 MeV/c150 MeV/cUnits Requirements (Guido Sterbini, 29Nov 2010) Gradient1.21.5T/m Magnetic length0.27 m Integrated Gradient T Drive Beam Quadrupole parameters Integrated Gradient T Magnetic length0.195 m Gradient T/m Pole field T Ampere-turns/coil115144A Number of turns/coil52 Current2.22.8A Resistance99 mOhm Voltage V Power W

MainBeam Quadrupole for CLEX Energy165 MeVUnits Requirements (Guido Sterbini, 29Nov 2010) Gradient0.1126T/m Magnetic length1.915m Integrated Gradient0.2156T MAIN Beam Quadrupole Type4 parameters Integrated Gradient Aperture radius5mm Magnetic length1.849m Gradient0.12T/m Pole field0.0006T Ampere-turns/coil1.1A Number of turns/coil17 Current0.065A Resistance62mOhm Volage0.004V Power0.0003W POLE FIELD= 6 [GAUSS] Current= 0.065[A]