EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Transistors (MOSFETs)
University of Toronto ECE530 Analog Electronics Review of MOSFET Device Modeling Lecture 2 # 1 Review of MOSFET Device Modeling.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
1 ELEC 422 Applied Integrated Circuit Design Section 2: MOS Fundamentals Chuping Liu [Adapted from Rabaey’s Digital Integrated Circuits, ©2003, J. Rabaey.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 12 Lecture 12: MOS Transistor Models Prof. Niknejad.
Fig. 5.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2 to 500.
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Metal-Oxide- Semiconductor (MOS) Field-Effect Transistors (MOSFETs)
EEE1012 Introduction to Electrical & Electronics Engineering Chapter 7: Field Effect Transistor by Muhazam Mustapha, October 2010.
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
ECE 340 ELECTRONICS I MOS APPLICATIONS AND BIASING.
Chapter 4 Field-Effect Transistors
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
Chapter 12 : Field – Effect Transistors 12-1 NMOS and PMOS transistors 12-2 Load-line analysis of a simple NMOS amplifier 12-3 Small –signal equivalent.
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
1 Figure 4.10 (a) Circuit symbol for the n-channel enhancement-type MOSFET. (b) Modified circuit symbol with an arrowhead on the source terminal to distinguish.
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
The MOS Transistor Polysilicon Aluminum. The NMOS Transistor Cross Section n areas have been doped with donor ions (arsenic) of concentration N D - electrons.
Field Effect Transistors (1) Dr. Wojciech Jadwisienczak EE314.
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
L27 April 241 Semiconductor Device Modeling & Characterization Lecture 27 Professor Ronald L. Carter Spring 2001.
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
L25 April 171 Semiconductor Device Modeling & Characterization Lecture 25 Professor Ronald L. Carter Spring 2001.
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter

L23 04/12/102 n-channel enhancement MOSFET in ohmic region 0< V T < V G V B < 0 E Ox,x > 0 Acceptors Depl Reg V S = 0 0< V D < V DS,sat e - e - e - e - e - n+ p-substrate Channel

L23 04/12/103 Conductance of inverted channel Q’ n = - C’ Ox (V GC -V T ) n’ s = C’ Ox (V GC -V T )/q, (# inv elect/cm 2 ) The conductivity  n = (n’ s /t) q  n G =  n (Wt/L) = n’ s q  n (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’ s q  n W)

L23 04/12/104 Basic I-V relation for MOS channel

L23 04/12/105 I-V relation for n-MOS (ohmic reg) IDID V DS V DS,sat I D,sat ohmic non-physical saturated

L23 04/12/106 Universal drain characteristic 9I D1 IDID 4I D1 I D1 V GS =V T +1V V GS =V T +2V V GS =V T +3V V DS saturated, V DS >V GS -V T ohmic

L23 04/12/107 Characterizing the n-ch MOSFET VDVD IDID D S G B V GS VTVT

L23 04/12/108 Low field ohmic characteristics

L23 04/12/109 MOSFET Device Structre Fig. 4-1, M&A*

L23 04/12/ a (A&M)

L23 04/12/1011 Figure 4-7b (A&M)

L23 04/12/1012 Figure 4-8a (A&M)

L23 04/12/1013 Figure 4-8b (A&M)

L23 04/12/1014 Body effect data Fig 9.9**

L23 04/12/1015 MOSFET equivalent circuit elements Fig 10.51*

L23 04/12/1016 n-channel enh. circuit model G D B S C gs C gd C gb C bs C bd RD RG RB RDS Idrain D SS D SD

L23 04/12/1017 MOS small-signal equivalent circuit Fig 10.52*

L23 04/12/1018 MOSFET circuit parameters

L23 04/12/1019 MOSFET circuit parameters (cont)

L23 04/12/1020 Substrate bias effect on V T (body-effect)

L23 04/12/1021 Body effect data Fig 9.9**

L23 04/12/1022 Fully biased n- channel V T calc

L23 04/12/1023 Values for  ms with silicon gate

L23 04/12/1024 Q’ d,max and x d,max for biased MOS capacitor Fig 8.11** x d,max (microns) |Q’ d,max |/q (cm -2 )

L23 04/12/1025 I-V relation for n-MOS IDID V DS V DS,sat I D,sat ohmic non-physical saturated

L23 04/12/1026 MOS channel- length modulation Fig 11.5*

L23 04/12/1027 Analysis of channel length modulation

L23 04/12/1028 Channel length mod- ulated drain char Fig 11.6*

L23 04/12/1029 Associating the output conductance IDID V DS V DS,sat I D,sat

L23 04/12/1030 SPICE mosfet Model Instance CARM*, Ch. 4, p. 290 L = Ch. L. [m] W = Ch. W. [m] AD = Drain A [m 2 ] AS = Source A[m 2 ] NRD, NRS = D and S diff in squares M = device multiplier

L23 04/12/1031 SPICE mosfet model levels Level 1 is the Schichman-Hodges model Level 2 is a geometry-based, analytical model Level 3 is a semi-empirical, short- channel model Level 4 is the BSIM1 model Level 5 is the BSIM2 model, etc.

L23 04/12/1032 SPICE Parameters Level (Static)

L23 04/12/1033 SPICE Parameters Level (Static) * 0 = aluminum gate, 1 = silicon gate opposite substrate type, -1 = silicon gate same as substrate.

L23 04/12/1034 SPICE Parameters Level (Q & N)

L23 04/12/1035 References CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, **M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997