Plug compatibility discussion TILC09 cavity integration session H. Hayano.

Slides:



Advertisements
Similar presentations
Interface of Plug-Compatible Cryomodule Components KEK Norihito Ohuchi 2008/3/41GDE-Sendai Meeting.
Advertisements

EXPERIENCE FROM KEK Norihito Ohuchi 2009/11/9-101 Workshop on cryogenic and vacuum sectorisations of the SPL.
Cavity Technical Specification IWLC2010 WG3 industrialization session H. Hayano Geneva,Oct.2010.
FNAL-SCRF 会議報告 1. Cryomodule, Plug-compatible Interface ( 大 内) 2. High Pressure Code, 5K Shield (Tom Peterson)
SPL cryo-module conceptual design review Cavity, helium vessel and tuner assembly N. Valverde, G. Arnau, S. Atieh, I. Aviles, O. Capatina, M. Esposito,
Shuichi Noguchi, KEK6-th ILC School, November Auxiliary Components  Input Power Coupler  HOM Dumping Coupler  Frequency Tuner  He Jacket  Magnetic.
Cavity Integration summary H. Hayano April 25, 2008 ILC-SCRF
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
1.3 GHz FNAL Dressed Cavity S-1 Global Deliverable to KEK 7 July 2009.
E. KAKO (KEK) 2009' Sept. 30 Albuquerque Global Design Effort 1 Cavity Test Items in S1-G Cryomodule Eiji Kako (KEK, Japan)
TDR Part 2: 3.3 Cavity Integration (10 pages) H. Hayano Baseline Design based on the meeting discussion.
Cavity Tuner Spec. profile for Plug Compatibility H. Hayano April 22, 2008 ILC-SCRF
R&D Status and Plan on The Cryostat N. Ohuchi, K. Tsuchiya, A. Terashima, H. Hisamatsu, M. Masuzawa, T. Okamura, H. Hayano 1.STF-Cryostat Design 2.Construction.
Heat load study of cryomodule in STF
ESS cavities interfaces
S1G Experiment Schedule Plan H. Hayano. Assembly work after cavity arrived Assumption: cavity with VT, with pickup antena, with Ar or N2 filled,
Summary of AWG7 SCRF technologies Eiji Kako Wolf-Dietrich Moeller Akira Yamamoto Hitoshi Hayano Tokyo, Nov
Shuichi Noguchi,SRF2007,10.71 New Tuners for ILC Cavity Application Shuichi Noguchi KEK.
Lutz Lilje DESY -MPY- Module Issues XFEL Linac Review R. Lange/L. Lilje Ongoing Tests Module Designs Future tests.
Detail discussion of S1 Global at STF H. Hayano (KEK) GDE Mar 3-6, 2008.
STF plan overview H. Hayano, KEK LCPAC 02/25/2005.
Type IV Cryomodule Proposal (T4CM) Don Mitchell, 16 JAN 2006.
XFEL SRF Accelerating Module Prototypes Tests at DESY Fermilab Seminar, July 21st Denis Kostin, MHF-SL, DESY.
Compatibility in the ILC ML. 主なデザインと相違点 BCD ( TTF) STF-BL その他 空洞、シー ル Φ 78 mm ビームパイ プ、アルミヘキサゴ ン Φ 80 mm ビームパイ プ、インジウムヘリ コ LL, Re 入力カプ ラー TTF-III 円筒セラミック窓.
S.Noguchi (KEK) ILC08 Chicago , Nov . 17, Cavity Package Test in STF STF Phase-1 E. Kako, S. Noguchi, H. Hayano, T. Shishido, M. Sato, K. Watanabe,
Plug compatibility Document ILC10 cavity integration session H. Hayano.
Parallel session summary ML/SCRF L. Lilje, H. Hayano, N. Ohuchi, S. Fukuda, C. Adolphsen (with help of Chris Nantista) TILC09,
S1G Experiment Schedule Plan; H. Hayano ILC10 GDE meeting.
LCWS13, November 2013 At the University of Tokyo W.–D. Möller Status of the TTF3 RF Power Coupler.
Shuichi NoguchiHayama ILC Lecture, Part III ILC BCD Cavity  Maximum Use of Potential Performance  Maximum Use of each Cavity Performance 
● Offer the reliable system to the Asian regional facility STF. ● Improve TTF design and demonstrate in the beam line for RDR / TDR. ● Establish industrial.
ALCPG/GDE Meeting FNAL Global Design Effort 1 Cavity Work Packages Lutz Lilje GDE.
Date 2007/Oct./25 FNAL-GDE-Meeting Global Design Effort 1 Cryomodule Report N. Ohuchi KEK 1.Cryomodule & Cryogenics KOM 2.GDE-meeting discussion I.Interface.
Summary ( Cryomodule, Plug-compatible Interface) Norihito Ohuchi.
1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.
Date 2007/Oct./23 FNAL-GDE-Meeting Global Design Effort 1 Cryomodule Interface Definition (FNAL-GDE-Meeting) N. Ohuchi.
Summery of the power coupler session at the LCWS13 workshop E. Kako W.-D. Möller H. Hayano A. Yamamoto All members of SCRF WG November 14, 2013.
Definition of Work Area H. Hayano, KEK EDR-KOM-cavity at DESY Issues of Cavity and Cavity Package, Work Package discussion.
Carlo Pagani University of Milano INFN Milano-LASA & GDE ILC and XFEL Cryomodules Preliminary thoughts for convergence ILC EDR Kick-off Meeting DESY,
Cavity and Cryomodule Plug-Compatibility To Reach Consensus Akira Yamamoto ILC-08, Chicago, Nov. 17, 2008 Nov. 17, 2008ILC-08 SCRF1.
MAIN LINAC CRYOMODULE DESIGN REVIEW INPUT COUPLER September 5, 2012V. Veshcherevich.
S1 global: thermal analysis TILC09, April 19th, 2009 Serena Barbanotti Paolo Pierini.
Summary of SCRF Meeting Fermilab, April 21-25, 2008 April 25, 2008 General Summary and Further Plan: 4/21: Cavity: Gradient R&D, performance, diagnostics.
Detail plan of S1-Global H. Hayano (KEK),
Date 2007/Sept./12-14 EDR kick-off-meeting Global Design Effort 1 Cryomodule Interface definition N. Ohuchi.
ALCPG/GDE Meeting FNAL Global Design Effort 1 Cavity Specification Table 23 Oct 2007 FNAL Lutz Lilje DESY.
S1-Global status report KEK Norihito Ohuchi 2008/11/171ILC08-GDE-Meeting-Chicago.
Hayama ILC Lecture, , Shuichi Noguchi 1 Part III ILC BCD Cavity  Maximum Use of Potential Performance  Maximum Use of each Cavity Performance.
Tuner, Coupler WP & specification table H. Hayano, KEK GDE Sendai.
ESS AD RETREAT 5 th December 2011, Lund “A walk down the Linac” SPOKES Sébastien Bousson IPN Orsay.
Preparation procedure and RF processining of cERL-ML power coupler at KEK Hiroshi Sakai, Takaaki Furuya, Masato Sato, Kenji Shinoe, Kensei Umemori, Kazuhiro.
Visiting DESY for S1-G module Norihito Ohuchi 2009/8/251 19th Biweekly Webex meeting (S1-G, Cryomodule, Cryogenics)
11/12/2013P. Bosland - AD-retreat - Lund Designs of the Spoke and Elliptical Cavity Cryomodules P. Bosland CEA/Saclay IRFU On behalf of the cryomodule.
TDR parameter discussion on Cavity, Cavity Integration R. Geng, H. Hayano
Shuichi NoguchiTTC Meeting at Milano, Injector Cryomodule for cERL at KEK Cavity 2 Prototypes were tested. Input Coupler 2 Couplers were tested.
S1G Experiment Schedule Plan
TDR guideline discussion on Cavity Integration
WP5 Elliptical cavities
T5.2: Harmonization - Material and Component Reference
Power Couplers, HOM Couplers and Tuners for the XFEL
Input coupler assembly, high power and thermal performance in S1-Global at KEK E. KAKO (KEK) 2011' Dec. 07 TTC meeting in Beijing.
S1-G Webex meeting Global Design Effort
Mechanical setups Lorentz Force Detuning System Setup
Jiyuan Zhai ( IHEP ) TTC Meeting, JLAB, 6 Nov 2012
Yamamoto WG3: ML-SCRF Parallel Session,
High Gradient Cavities: Cost and Operational Considerations
V. Veshcherevich Cornell University
Review of the European XFEL Linac System
CEPC Input Coupler Discuss 6th IHEP-KEK SCRF Collaboration Meeting
CEPC-650MHz Cavity Cryomodule
Presentation transcript:

Plug compatibility discussion TILC09 cavity integration session H. Hayano

(1) Specifications table for plug-compatibility (2) Definitions of boundary for couplers

(1) Specification Profile Tables The purpose of table: to understand specification of function, specification of physical dimensions. to understand what is fixed, what is not fixed, for item by item. to facilitate ‘Plug compatibility’ concept. Tables visualize the specifications for; Cavity Tuner Coupler We had the discussion at Cavity Kick-off meeting in DESY (Sep. 2007), at ML-SCRF meeting in DESY (Jan. 2008), at GDE meeting in Sendai (Mar. 2008), at ML-SCRF meeting in FNAL (Apr. 2008) at GDE meeting in Chicago (Nov.2008) Current tables are followings;

cavity specification itemspecificationunit and commentsfurther comments RF properties Frequency1.30GHz Number of cells9.00cells Gradient 31.50MV/moperational 35.00MV/mVertical test Q ^10at ^10at 31.5 HOM damping Qdecide later R/Qdecide later Short range wake decide later Operating temperature2.00K Physical properties Length1247mmTESLA-short length Aperture mm must be compatible with beam dynamics Alignment accuray300.00umrms MaterialNiobium Wall thickness2.80mm Stiffness decide later Flange/Seal system Materialdecide later Maximum overpressure allowed2bar Lorentz force detuning over Flat- top at 35 MV/m1.00kHzmaximum Outer diameter He vessel mm(inner diameter) Mag shield outside, decide later for precise number mm(inner diameter) KEK Mag shield inside, decide later for precise number Magnetic shielding inside/outsidedecide later * yellow boxes indicate ‘not fixed’

tuner specification itemspecificationunit and commentsfurther comments Slow tuner Tuning range>600kHz Hysteresis in Slow tuning <10µm Motor requirement step-motor use, Power-off Holding, magnetic shielding Motor specification ex) 5 phase, xxA/phase, … match to driver unit, match to connector pin asignment,… decide later Motor location insdie 4K? / outside 300K? / inside 300K accessible from outside? need availability discussion, MTBF decide later Magnetic shielding<20 mG at Cavity surface, average on equater Heat Load by motor<50mW at 2K Physical envelope do not conflict with GRP, 2-phase line, vessel support, alignment references, Invar rod, flange connection,… cable connection, Mag shield Survive Frequency Change in Lifetime of machine ~20 Mio. steps could be total number of steps in 20 years, * yellow boxes indicate ‘not fixed’

Fast tuner Tuning range>1 kHz over flat-top at 2K Lorentz detuning residuals <50 Hz at 31.5MV/m flat- top (LD and microphinics? or LD only?) :decide later Actuator specification ex) low voltage piezo V, … match to driver unit, match to connector pin asignment, … decide later Actuator location insdie 4K?/inside 4K accessible/inside 100K? accesible / inside 300K accessible from outside? decide later Magnetic shielding<20 mG at Cavity surface average Heat Load in operation <50mW Physical envelope do not conflict with GRP, 2-phase line, vessel support, alignment references, Invar rod, flange connection,… Survive Frequency Change in Lifetime of machine >10 10 number of pulses over 20 years, (2x10 9 :operational number) * yellow boxes indicate ‘not fixed’

Coupler conditionspecificationunit and commentsfurther comments Power requirements Operation>400kW for 1600 us Processing >1200kW upto 400 usneed after vac break, cool-down >600kW larger than 400 usneed after vac break, cool-down Processing with reflection mode>600kW for 1600usin Test stand Processing time warm <50hours after installation, definition of power/pulse_width target are the same as 'Power Requirement' above. cold <30hours after installation, definition of power/pulse_width target are the same as 'Power Requirement' above. Heat loads /coupler 2K static< 0.063W 5K static< 0.171Wdepend on tunability 40 K static< 1.79W 2K dynamic< 0.018W 5K dynamic< 0.152W 40K dynamic< 6.93W Cavity vacuum integrety # of windows2 bias capablityyes RF Properties QextYes/Notunabledecide later Tuning range1-1010^6 if tunable Physical envelope Position compatible to TTF-IIIdecide later Flange compatible to TTF-III decide later (to cavity, to cryostat) waveguide compatible to TTF-IIIdecide later support compatible to TTF-IIIdecide later Instrumentation vacuum level>= 1 spark detection0at window electron current detection>= 1at coax temperature>= 1at window * yellow boxes indicate ‘not fixed’

Plug compatible conditions at Cavity package (in progress) ItemCan be flexible Plug- compatibl e Cavity shapeTESLA /LL /RE LengthRequired Beam pipe diaReuuired FlangeRequired TunerTBD Coupler flangeRequired He –in-line jointRequired Input couplerTBD KEK He vessel for STF phase-2 : NbTi flanges are used. (two bellows location are used.)

Tuner location and He vessel supports KEK evaluates two tuner locations and two support locations. ( in S1G module and phase-2 1 st cryomodule) 4 supports are plug-compatible

(1) cavity port flange (2) cold part/warm part flange (?, may not be an interface.) (3) cryostat vessel flange (4) waveguide flange input coupler boundary Input coupler boundary BCD: TTF3 coupler

(A) input port diameter (cold port) : 40mm, or 60mm, or else? (B) boundary at cryostat Points of coupler boundary discussion (1)port position from regular cell are differ from 45mm to 58mm. (2)cavity length (1247mm) will increase about 20mm for 60mm port diameter. (3)XFEL: 40mm (4)TTF3 type coupler can be used to 60mm port diameter. (5)keep (6-1/4)  for slot length 1327mm (coupler to coupler length)? Adaptors for cryostat port flange can be used to maintain boundary interface. rf power capability (C) boundary at wave-guide flange compact coaxial-rectangular converter as possible as we can. end