θ
Trigonometric Ratios
θ Reference Angle Adjacent Leg Hypotenuse Opposite Leg Basic ratio definitions
+ Counter clockwise - clockwise Initial Ray Terminal Ray Definition of an angle
Coterminal angles – angles with a common terminal ray Initial Ray Terminal Ray
Coterminal angles – angles with a common terminal ray Initial Ray Terminal Ray
Radian Measure
r r 1 Radian 57.3 o 360 o = 2 π radians 180 o = π radians Definition of Radians C= 2 πr C= 2 π radii C= 2 π radians
Converting Degrees ↔ Radians Recall Converts degrees to Radians Converts Radians to degrees more examples
Unit Circle – Radian Measure
Degrees
Circle Trigonometry Definitions (x, y) Radius = r Adjacent Leg = x Opposite Leg = y reciprocal functions
Unit - Circle Trigonometry Definitions (x, y) Radius = 1 Adjacent Leg = x Opposite Leg = y 1
Unit Circle – Trig Ratiossincostan (+, +) (-, -) (-, +) (+, -) Reference Angles Skip π/4’s
Unit Circle – Trig Ratiossincostan (+, +) (-, -) (-, +) (+, -)
Unit Circle – Trig Ratiossincostan (+, +) (-, -) (-, +) (+, -) sincostan Ø Ø (0, -1) (0, 1) (1, 0)(-1, 0) 0 /2 π Quadrant Angles View π/4’s
Unit Circle – Radian Measuresincostan (+, +) (-, -) (-, +) (+, -) Degrees 1 sincostan Ø Ø 0 /2 π Quadrant Angles
A unit circle is a circle with a radius of 1 unit. For every point P(x, y) on the unit circle, the value of r is 1. Therefore, for an angle θ in the standard position:
Special Right TrianglesThe Pythagoreans Graphs Rene’ DesCartes Trigonometry Hipparchus, Menelaus, Ptolemy
Reference Angle Calculation 2 nd Quadrant Angles3 rd Quadrant Angles4 th Quadrant Angles Return
Unit Circle – Degree Measure 0/ Return
Unit Circle – Degree Measure 0/ sincostan (+, +) (-, -) (-, +) (+, -) Return 1 sincostan Ø Ø 0/ Quadrant Angles
Ex. # 6Ex. # 5 Ex. # 4Ex. # 3 return
Circle Trigonometry Definitions – Reciprocal Functions (x, y) Radius = r Adjacent Leg = x Opposite Leg = y return
Unit Circle – Radian Measure 1