ST7 Interferometer LIGO-G040043-00-Z1 The ST7 Interferometer Andreas Kuhnert Robert Spero Jet Propulsion Laboratory California Institute of Technology.

Slides:



Advertisements
Similar presentations
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Advertisements

Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Status of the Virgo Commissioning G.Losurdo – INFN Firenze/Urbino for the Virgo Collaboration.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
ICSO High Accuracy Laser Telemetry for Kilometric Distance Measurement in Space C.COURDE, H. PHUNG Duy, M. LINTZ, A. BRILLET ARTEMIS, Observatoire.
Precision Displacement Measurement via a Distance Measuring Interferometer (DMI)
Optical Alignment with Computer Generated Holograms
Interference & Diffraction
LIGO-G W Proposed LHO Commissioning Activities in May 02 Fred Raab 29 Apr 02.
1 Virgo Commissioning progress and plans ILIAS, Jan 23 rd 2007 Matteo Barsuglia on behalf of the Commissioning Team.
VSR1 summary - post VSR1 Commissioning plans E. Tournefier (LAPP-CNRS) LSC-Virgo meeting Oct 22 nd, 2007.
LumiCal Alignment System Status report Leszek Zawiejski, Tomasz Wojtoń, Arkadiusz Moszczyński Institute of Nuclear Physics PAN, Cracow 25th FCAL Collaboration.
Chapter 25: Interference and Diffraction
M.Lintz, ICSO mode laser telemetry 1 "T2M": two-mode telemetry for high accuracy absolute distance measurement M. Lintz, C. Courde, A. Brillet,
NA62 Gigatracker Working Group Meeting 2 February 2010 Massimiliano Fiorini CERN.
Current progress of developing Inter-satellite laser interferometry for Space Advanced Gravity Measurements Hsien-Chi Yeh School of Physics Huazhong University.
1 Virgo commissioning since the end of VSR1 E. Tournefier for the commissioning team ILIAS WG1, Cascina March 5 th,2008.
G O D D A R D S P A C E F L I G H T C E N T E R 1 GW Interferometry at Goddard Space Flight Center Jordan Camp NASA / Goddard Space Flight Center Jan.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
Current Progress of Development of Laser Interferometry for LISA-type Mission in China Hsien-Chi Yeh School of Physics Huazhong University of Science &
Katrin Dahl for the AEI 10 m Prototype team March 2010 – DPG Hannover Q29.1 Stabilising the distance of 10 m separated.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Alignment and Beam Stability
Paris May23rd 2012 L. Di Fiore 1 Development of an Optical Read-Out system for the LISA/NGO gravitational reference sensor: a status report Rosario De.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) Institut für Atom- und Molekülphysik Detector Characterization of GEO 600 during.
Beam Instrumentation for Orbit Stability I. Pinayev.
Joshua Smith December 2003 Detector Characterization of Dual-Recycled GEO600 Joshua Smith for the GEO600 team.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Several Fun Research Projects at NAOJ for the Future GW Detectors
IPBSM status and plan ATF project meeting M.Oroku.
PERFORMANCE OF THE MACRO LIMITED STREAMER TUBES IN DRIFT MODE FOR MEASUREMENTS OF MUON ENERGY - Use of the MACRO limited streamer tubes in drift mode -Use.
1 2 nd Virgo+ review, Cascina 17/10/2007 H. Heitmann New Quadrant Diodes New Quadrant Diodes Motivations & Requirements Status & Plans: see Nikhef talk.
08/31/2006 ~ Mission specific challenges: Data Analysis GRS Interferometry.
LIGO-G Z 2) Accomplishment of Japan RSE '98-'01 -- Result of Osamu’s RSE Experiments -- LSC Livingston 2002 Kentaro Somiya University.
Environmental noise studies at VIRGO Environmental contributions to Virgo readout noise (C-runs) many sources identified through coherency analyses with.
LISA October 3, 2005 LISA Laser Interferometer Space Antenna Gravitational Physics Program Technical implications Jo van.
Enhanced LIGO with squeezing: Lessons Learned for Advanced LIGO and beyond.
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech – LIGO Laboratory.
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
1/10 Tatsuya KUME Mechanical Engineering Center, High Energy Accelerator Research Organization (KEK) ATF2-IN2P3-KEK kick-off meeting (Oct. 10, 2006) Phase.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
LIGO-G Z The Status of VIRGO E. Tournefier for the Virgo Collaboration GWADW 2004, Aspen From the CITF to VIRGO Commissioning of the Fabry-Perot.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
1 Virgo Commissioning Status WG1 meeting Potsdam, 21 st July 2006.
Stefan Hild 111th WG1 meeting, Hannover, January 2007 DC-Readout for GEO Stefan Hild for the GEO-team.
The VIRGO Suspensions Control System Alberto Gennai The VIRGO Collaboration.
LASER FRAME: Straightness monitor (Tentative results of resolution test) Third Mini-Workshop on Nano Project at ATF May 30-31,2005 KEK Nano BPM Group Y.Higashi,
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
IP instrumentation configuration for Autumn 2010 ATF2 runs Toshiyuki OKUGI, KEK 2010 / 7/ 1 10 th ATF2 project meeting.
M. Mantovani ILIAS Cascina March 2008 Automatic Alignment system Improvements after the VSR1 M. Mantovani for the Alignment team.
IP BPM’s for ATF2 Vladimir Vogel KEK May30, 2005 Third Mini-Workshop on Nano Project at ATF.
LIGO-G D “Bi-linear” Noise Mechanisms in Interferometers Stan Whitcomb LIGO/Caltech GWDAW 15 December 2000.
IPBSM Operation 11th ATF2 Project Meeting Jan. 14, 2011 SLAC National Accelerator Laboratory Menlo Park, California Y. Yamaguchi, M.Oroku, Jacqueline Yan.
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Advanced LIGO UK 1 LIGO-G K OSEM Development UK Advanced LIGO project Stuart Aston University of Birmingham for the UK Advanced LIGO Team LSC.
Sensitivity of Virgo E. Tournefier (LAPP-CNRS) LSC-Virgo week May 23 rd,2007 LIGO-G Z.
The VIRGO detection system
G O D D A R D S P A C E F L I G H T C E N T E R 1 Status of LISA Jordan Camp LISA Deputy Project Scientist NASA / Goddard Space Flight Center Jan. 19,
10-meter Interferometer Results M. Woods (special thanks to Steve Myers and Tim Slaton) Jan. 31, 2000 Commissioning Setup System Noise Monte Carlo simulation.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
Accuracy of the orbit measurement by KEKB BPM system for the study of ILC damping ring H. Fukuma (KEK) Requirement for the accuracy of BPM data.
Local control sensors for iKAGRA payloads and perspective (Optical lever) Kazuhiro Agatsuma 2013/Dec./5 ELiTES meeting at Tokyo1.
The Proposed Holographic Noise Experiment
A New OEO Design Using Optical Phase Modulation and Modulation Suppression G. John Dick and Nan Yu Jet Propulsion Laboratory, California Institute of Technology.
Bunch Tiltmeter Steve Smith SLAC Snowmass July 16, 2001 Update date
Temperature distribution Vertical displacement
Presentation transcript:

ST7 Interferometer LIGO-G Z1 The ST7 Interferometer Andreas Kuhnert Robert Spero Jet Propulsion Laboratory California Institute of Technology

ST7 Interferometer LIGO-G Z2 ST7 Concept Measure suspended masses within spacecraft Test thruster performance in drag-free control Hitch ride on LISA Pathfinder Optical bench TM1 TM2 Interferometer optical bench fixed to spacecraft x 1 and x 2 measured separately; x 1 + x 2 is low-noise x1x1 x2x2

ST7 Interferometer LIGO-G Z3 Optical Bench Beam-splitter Collimator Insensitive path Sensitive path Intensity Monitor Optical Fiber Quadrant photodiode 20 cm TM1 TM2

ST7 Interferometer LIGO-G Z4 Interferometer Features Beam diameter 1 mm, Rayleigh range 70 cm, sensitive path lengths 10 cm. No modulators, phasemeters, intensity stabilization, or frequency stabilization. Requires test mass to be positioned near mid-fringe. Intensity monitored, noise removed in data analysis. Separate measurements of both bench/test-mass distances. Quadrant photodiodes monitor total fringe signal, and two axes of alignment. Automatic alignment, autonomous operation.

ST7 Interferometer LIGO-G Z5 Manual Alignment Thermal Expansion Homodyne Signal A B A B Optical Bench 

ST7 Interferometer LIGO-G Z6 Contacted Optics in Vacuum Chamber

ST7 Interferometer LIGO-G Z7 Testbed Drift

ST7 Interferometer LIGO-G Z8 60 pm rms optical bench modulation Testbed Noise mHz pm/rtHz Allocated noise Measured noise

ST7 Interferometer LIGO-G Z9 Measurements Demonstrate: 1.Analog electronics and ADC noise adequately low 2.Thermal sensitivity probably adequately low 3.Bench motion suppression typically x200, without calibration (x1000 needed) 4.Frequency stabilization not needed 5.Intensity noise can be suppressed in data analysis

ST7 Interferometer LIGO-G Z10 Alignment Sensitivity 1: Geometric error  x S = s 1   s1s1 p  x c = p     x S = s 1 sin  x c = p cos  Errors are correlated, and of same order: s 1 ~ p   s 1 = 40  ; p = 10 cm;   = 400  rad

ST7 Interferometer LIGO-G Z11 Alignment Sensitivity 2: Fringe position error  x x =  x     (  w  2 =  x 10 6, w=beam radius p + x  

ST7 Interferometer LIGO-G Z12 Total angle-jitter noise Test mass jitter, 1  rad/rthz Displacement noise, 30 pm/rthz Transverse error, 40  m Misalignment, 400  rad Fringe center error, 30 nm

ST7 Interferometer LIGO-G Z13 Initialization 1. Starting state 2. IFO finds bright fringe 3. GRS moves to quarter fringe 4. IFO Aligns 5. GRS to half fringe Position Intensity

ST7 Interferometer LIGO-G Z14 Dithered alignment -- concept

ST7 Interferometer LIGO-G Z15 Dithered alignment -- Simulink model

ST7 Interferometer LIGO-G Z16 Dithered alignment -- Simulink run

ST7 Interferometer LIGO-G Z17 Bright fringe finder -- Simulink model

ST7 Interferometer LIGO-G Z18 Bright fringe finder -- Simulink run

ST7 Interferometer LIGO-G Z19 QPD difference alignment -- Simulink model

ST7 Interferometer LIGO-G Z20 QPD difference alignment -- Experiment

ST7 Interferometer LIGO-G Z21 QPD difference signal alignment sensitivity

ST7 Interferometer LIGO-G Z22 Sum vs. difference signals at half-fringe

ST7 Interferometer LIGO-G Z23 Backups

ST7 Interferometer LIGO-G Z24 Intensity Pattern with Misalignment Horizontal misalignment shown. Pattern insensitive to fringe offset near mid-fringe. Sample with 4 pixels (quadrant photodiode). Difference/sum response: dQ/d  = sqrt(8kw/  3 )

ST7 Interferometer LIGO-G Z25 Static Misalignment and Static Longitudinal Error Fringe Visibility Error Sensitivity w=0.5 mm w=1.0 mm w=2.0 mm 0 1 Misalignment (  rad) Bright Mid Dark Electronic noise Alignment noise