Design of Time zero(T0) counter contents Characteristic of p+p collision Time of Flight method Systematic scintillator performance Scintillator selection.

Slides:



Advertisements
Similar presentations
Design of Time zero(T0) counter contents Characteristic of p+p collision Time of Flight method Systematic scintillator performance Scintillator selection.
Advertisements

The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6-7 Dec Nagoya Univ.
DHC 101 Introduction to scintillation detectors. How many PE/MIP should we expect? Scintillation & Fluorescence WSFWSF PMTPEs  (MIP)
Test results and status on T0 T0: start counter for pp collisions ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba test experiment at KEK-PS analysis.
Particle interactions and detectors
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
1 From Raw Data to Physics Results Grass 2009/08/07.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Time-of-Flight at CDF Matthew Jones August 19, 2004.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
MICE: The International Muon Ionization Cooling Experiment Diagnostic Systems Tracker Cherenkov Detector Time of Flight Counters Calorimeter Terry Hart.
Timing Properties of T0 Detectors At PHOBOS Saba Zuberi, Erik Johnson, Nazim Khan, Frank Wolfs, Wojtek Skulski University of Rochester.
The UC Simulation of Picosecond Detectors Pico-Sec Timing Hardware Workshop November 18, 2005 Timothy Credo.
Stephen KahnParticle ID Software Mice Collaboration Meeting Page 1 Particle ID Software Steve Kahn Brookhaven National Lab 27 March 2003.
27 Jun 2005S. Kahn -- Tof/Ckov Status1 Status of TOF and Ckov Sub- packages in G4Mice Steve Kahn 27 June 2005.
Forward Detectors and Measurement of Proton-Antiproton Collision Rates by Zachary Einzig, Mentor Michele Gallinaro INTRODUCTION THE DETECTORS EXPERIMENTAL.
Scintillation Detectors
Peter Križan, Ljubljana March 17, 2006 Super B Workshop, Frascati Peter Križan University of Ljubljana and J. Stefan Institute Aerogel RICH and TOP: summary.
Reaction Plane Detector Safety Review Abigail Bickley, for the RxnP Group University of Colorado June 22, 2006 All data sheets can be found at:
Position Sensitive SiPMs for Ring Imaging Cherenkov Counters C.Woody BNL January 17, 2012.
A Reconstruction Algorithm for a RICH detector for CLAS12 Ahmed El Alaoui RICH Workchop, Jefferson Lab, newport News, VA November th 2011.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Measurement of 'intrinsic' properties of scintillating fibers H. Sakamoto Osaka University, Japan A.Sato M. Yoshida Y. Kuno Osaka Univ. K. Yoshimura KEK.
1 Fast Timing via Cerenkov Radiation‏ Earle Wilson, Advisor: Hans Wenzel Fermilab CMS/ATLAS Fast Timing Simulation Meeting July 17,
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
Time of Flight Counter BESIII International Review Sep. 16, 2002 Heng Yuekun
Feb 10, 2005 S. Kahn -- Pid Detectors in G4MicePage 1 Pid Detector Implementation in G4Mice Steve Kahn Brookhaven National Lab 10 Feb 2005.
Photodetection EDIT EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Micro Channel plate PMT (MCP-PMT) Similar to ordinary.
BNL/ Tatsuya CHUJO CNS workshop, Tokyo Univ. Identified Charged Single Particle Spectra at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX.
Reaction Plane Detector Safety Review Abigail Bickley, for the RxnP Group University of Colorado June 22, 2006.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
PANDA FTOF Prototyping Anton A. Izotov, Gatchina
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
1 TRD-prototype test at KEK-FTBL 11/29/07~12/6 Univ. of Tsukuba Hiroki Yokoyama The TRD prototype is borrowed from GSI group (thanks Anton).
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
Hongyu Fu, Trigger group The Monte Carlo for Trigger Design of BES3 Scintillating Fibre BEMC Outline: Introduction to BES3 Scin-fibre BEMC Trigger.
Electron and identified hadron v 2 to look for hadronic or partonic origin of elliptic flow Shingo Sakai for the PHENIX Collaboration Univ. of Tsukuba.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Time of Flight Detectors at RHIC Time of Flight Measurements at RHIC  TOF detector as a PID devices  PHENIX-TOF and BRAHMS-TOF PHENIX Time-of-Flight.
Charged Particle Multiplicity and Transverse Energy in √s nn = 130 GeV Au+Au Collisions Klaus Reygers University of Münster, Germany for the PHENIX Collaboration.
KEK Test Beam Phase I (May 2005) Makoto Yoshida Osaka Univ. MICE-FT Daresbury Aug 30th, 2005.
HARP measurements of pion yield for neutrino experiments Issei Kato (Kyoto University) for the HARP collaboration Contents: 1.HARP experiment Physics motivations.
Future Possibilities for Measuring Low Mass Lepton Pairs in Christine Aidala for the Collaboration Quark Matter 2002, Nantes.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 Studies on High QE PMT Tadashi Nomura (Kyoto U.) Contents –Motivation –Performance.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Feasibility study of Heavy Flavor tagging with charged kaons in Au-Au Collisions at √s=200 GeV triggered by High Transverse Momentum Electrons. E.Kistenev,
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
TOF Reconstruction, Calibration & Test-beam Simulation Jiang Linli 2005/6/1 (13th BES Annual Meeting )
PROPOSAL FOR A MUON VETO SYSTEM BEHIND THE HADRONIC CALORIMETER (MUV-3) Problems and requirements:  Expected total rate for 9.25 < R < 120 cm: 12.1 MHz:
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
Photon Transport Monte Carlo September 27, 2004 Matthew Jones/Riei IshizikiPurdue University Overview Physical processes PMT and electronics response Some.
TORCH – a Cherenkov based Time-of- Flight Detector Euan N. Cowie on behalf of the TORCH collaboration E N Cowie - TORCH - TIPP June 2014.
Yonsei – Tsukuba Workshop / Hiroshi Tsuruoka / Aug 1 Current Status of TOF Analysis 1. PHENIX 実験とは 2.なぜ新たな検出器が必要か? 3. Time Zero Counter の設計 4.テスト実験(
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Rita Carbone, RICAP 11, Roma 3 26/05/2011 Stand-alone low energy measurements of light nuclei from PAMELA Time-of-Flight system. Rita Carbone INFN Napoli.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
Focal Plane Scanner Jie Pan * + for the scanner working group Laura Cobus*, Anna Micherdzinska* Jeff Martin*, Peiqing Wang + * University of Winnipeg /
Seoul National University On behalf of J-PARC E18 Collaboration
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Methods of Experimental Particle Physics
RICH simulation for CLAS12
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
PHYS 3446 – Lecture #16 Particle Detection Silicon Photo-Multipliers
Forward TOF Anton A. Izotov, PNPI.
Effect of magnetic field
PHYS 3446 – Lecture #17 Wednesday ,April 4, 2012 Dr. Brandt
Presentation transcript:

Design of Time zero(T0) counter contents Characteristic of p+p collision Time of Flight method Systematic scintillator performance Scintillator selection PMT selection Simulation of T0 counter Schematic design of T0 counter Background by T0 counter Last modified 2000/10/03 Univ. of Tsukuba Hiroshi Tsuruoka, Masaya Ono

What’s different in p+p collision ? p+p 100 GeV(JAM) Au+Au 100AGeV(JAM) Charged dn/dy distribution dn c /dy Low multiplicity(≈1/200 of Au+Au collision). rapidity p+p 100 GeV(FRITIOF)

Mean=1.2 〔 particles/event 〕 Beam-Beam Counter(BB) in p+p collisions. No.of hits%σ BBC [ps] 041― Hit Multiplicity of Beam Beam Counter No.of hits% Hit Multiplicity of Time-of-Flight detector region (67 ° <θ<113°,0 ° <φ<45° ) Mean=0.18 〔 particles/event 〕 Few charged particles hit Time of Flight. Need “Trigger” for efficient measurement. ~ 40 % No Hit at BBC ~ 84 % No Hit at ToF BBC can’t be used as start counter.

Purpose of T0 Time zero(T0) counter Covered Time-of-Flight detector region. Time resolution <50ps Purpose Provides trigger for hadron measurement and start timing for TOF measurements BBC can’t be used as start counter. Few charged particles hit Time of Flight. Need “Trigger” for efficient measurement. TRIGER=CLOCK×T0(×TOF) preferable

Time of Flight method resolution Required 100ps for 4σ Stop counter (Time-of-Flight detector) resolution. <80ps Start counter resolution For Au+Au collision start counter= Beam Beam Counter ΔT stop =60ps achieved ∴ ΔT start required 50~60 ps Time of Flight (ToF) resolution

How to measure the start, stop Time PMT2PMT1 Charged particle x L-x t0t0 Measured timeObtain hit time t 0, hit position X Resolution t 0, x Resolution t 1, t 2 N: Number of photo- electron Time resolution has been found to be dominated by Number of photo-electron.

Systematic scintillator performance (ref M.Kurata et al. / NIM A 349(1994)447-45) 1.Light yield (proportional photo-electron) Light yield is decrease exponentially with the distance from PMT λ LA is proportional scintillator’s cross section λ LA :light attenuation length 2.PMT’s time resolution λ TD :time degradation length ΔT degrades exponentially with the distance from the PMT Large cross section scintillater has small ΔT. BC404 scintillator

Scintillator selection BC404 plastic scintillator Physical constant value Light output(%anthracene)68 Wavelength of maximum emission408nm Decay constant of main component1.8ns Bulk light attenuation length160cm Refractive index1.58 Radiation length42.5cm Required performanse 1.for good ΔT large light yield ⇒ thicker scintillator 2.a little background effect for backyard detectors a little conversion probability ⇒ thiner scintillator Where do we compromise?

Top : Bottom : PHENIX Conseptual Design Report, Chapter4 Magnets (1993) PMT for strong magnetic field ( ~ 4000 gauss) Hide PMT from charged particle B Effect of magnetic field

※ HAMAMATSU PHOTONICS K.K. R5924 fine mesh PMT Operate in high magnetic field High gain ~ 400μA ( cf. R3809 MCP type ~ 1 0 μA ) Rise Time ‥‥‥ 2.5 nsec T.T.S ‥‥‥ 440psec Anode Effective Area ‥‥‥ Φ39mm (min) Current Amplification at 0 Tesla at 0.5 Tesla at 1.0 Tesla PMT selection

Monte Carlo Calculation

Cross section Scintillator face 2cm×8cm PMT scintillator PMT face 4cm×4cm ① inside ② outside 100 % ? % L cm Few difference between inside rod and outside and get many photon when L=10cm Light Guide

Cross section scintillator inside outside 100 % ? % L cm PMT Scintillator face 2cm×8cm PMT face 4cm×4cm ① no reflection ② rectangle ③ fish tail ④ rectangle + fish tail 4cm L [cm] Light Guide(detail)

cross section 2cm×2cm ×42cm×8cm ‥‥ ① outside ‥‥‥ ‥‥・② inside ‥‥‥・ ③ PMT scintillator x [cm] ・ Scintillator should be divided into four. Expected Time Degradation

PMT Light guide charged particle scintillator ⊿TL⊿TL ⊿TR⊿TR x [cm] T0 resolution : (x=50cm) Expected T0 Resolution

Proposed Design 1

Proposed Design 2

φcoverage of T0 counter Pt(MeV/c)Max degree Min degree Required φcoverage(Δφ) 1set coverage of T0 is 10° °118°130° °136°100° °145°85° *Max degree ・・・ The maximum degree that plus charged particles can hit Time-of-Flight detector.(particles also through drift,pad chamber) *Min degree ・・・ The minimum degree that minus charged particles can hit Time-of-Flight detector.(particles also through drift,pad chamber) Time-of-Flight detector covers φ=168° ~ 213° e+:Pt=400MeV e+:Pt=300MeV e+:Pt=200MeV e-:Pt=400MeV e-:Pt=300MeV e-:Pt=200MeV T0 counter Time-of-Flight detector X y φ

Background by T0 (conversion) GEANT simulation Generate γray which have (π0 ⇒ 2γ ) momentum ThicknessConversion Probability(GEANT) From Radiation length(λ rad =43cm) 2.0cm 2.5 % 2.4 % 2.5cm 2.8 % 3.0 % 3.0cm 3.4 % 3.5 % Charged Multiplicity =primary +secondary = (JAM) = (FRITIOF)