Predissociation of the A 2 + state of the SH (SD) radical A.J. Orr-Ewing, R.A. Rose, C.-H. Yang, K. Vidma and D.H. Parker
Spectroscopic studies of SH(A 2 + ) A 2 + (v,J) lifetimes for SH and SD from LIF (Ubachs et al., Kawasaki et al.) and CRDS (Wheeler et al.) M.D. Wheeler et al. J. Chem. Phys. 107, 7591 (1997) Lifetime v'SHSD – 0.95 ns247 – 38 ns – 4.61 ps35 – 24 ns 2~ 1 ps2.31 ps SH A 2 + - X 2 (1,0)
Predissociation of the A 2 + state Lifetimes modelled using Fermi Golden Rule calculations Fitted A-state and ab initio repulsive potentials
Dissociation dynamics Is dissociation adiabatic or non-adiabatic on the repulsive PE curves? Asymptotic measurements of: S( 3 P J ) spin-orbit branching ratios m-state populations recoil velocity anisotropy ( parameters) Velocity map imaging of S( 3 P J ) photofragments H-atom PTS (Jingsong Zhang, UC Riverside)
Velocity map imaging Field free TOF Pulsed nozzle & discharge Ion optics Nd:YAG Dye laser KDP crystal MCPs P47 CCD camera 25% H 2 S (D 2 S)/ Xe Photolysis laser Probe S( 3 P J ) by 2+1 REMPI Nd:YAG KDP crystal Dye laser H V H V SH(X 2 ; v=0, j) SH(A 2 + ; v', j') S( 3 P J ) + H( 2 S) SH(A 2 + v'=0, 1 & 2) via P 1 (1.5), Q 1 (1.5) and R 1 (1.5) + R Q 21 (1.5)
Information in velocity images r Radius is proportional to S atom speed Image intensity depends on the number of S( 3 P J ) atom products Angular distributions give information on the recoil velocity direction and the alignment of angular momentum of S( 3 P) atoms
S( 3 P J ) branching – nonadiabatic dynamics SH(A,v’=1) S( 3 P 0 )S( 3 P 1 )S( 3 P 2 ) v'=0 SH v'=1 v'=2 A 2 + v' S( 3 P 0 )S( 3 P 1 )S( 3 P 2 ) (9) 0.07 (3) 0.80 (12) (4) 0.06 (2) 0.76 (5) (5) 0.04 (2) 0.62 (7) 1/2 3/2 5/2 H( 2 S) + S( 3 P 0 ) H( 2 S) + S( 3 P 1 ) H( 2 S) + S( 3 P 2 ) Repulsive PE curves X-state A-state 1/2 H( 2 S) + S( 1 D)
Angular anisotropy in the images S( 3 P 0 ) V V H S( 3 P 2 ) J = 0 so no alignment
Anisotropy parameters ( v ) # P.L. Houston et al., J. Chem. Phys. 125, (2006) For predissociative states, velocity anisotropy is reduced by rotation of molecule – depends on lifetime and interference between overlapping transitions. # SH A 2 + - X 2 v' = 2 v'' = 0 P 1 (1.5) Q 1 (1.5) R 1 (1.5)
Hyperfine depolarization Nuclear spin coupling can depolarize bond alignment; Hyperfine coupling timescales are a few ns; Anisotropy parameters for SH/SD A 2 + v=0 reduced. Lifetime for SH(A,v=0, J=1.5) Q 1 (1.5)
Angular momentum polarization Analysis of probe laser polarization dependence of angular anisotropy of images; Populations of m-states for S( 3 P 2 ) and S( 3 P 1 ). 3P13P1 3P23P2
m-state correlations 4 - 1/2 S( 3 P 2 m = 1) + H( 2 S 1/2 m = ½) 2 1/2 S( 3 P 2 m = 0) + H( 2 S 1/2 m = ½) Non-adiabatic transitions between 4 - 1/2 and X 2 1/2 state at long range, mediated by spin-orbit coupling. = 3/2 states correlate to S( 3 P 2 m = 2); requires rotation-induced couplings.
Conclusions Predissociation of the low v' levels of the A 2 + state of SH and SD is via coupling to the 4 - state; Lifetimes (measured by LIF and CRDS) affect the photofragment recoil velocity anisotropy; values are successfully modelled by theory; Hyperfine couplings can degrade the anisotropy; S( 3 P J ) branching ratios and m-state populations indicate non-adiabatic dissociation dynamics from the 4 - 1/2 state to the X 2 1/2 and 4 1/2 states.
Acknowledgements Rebecca RoseDavid Parker Chung-Hsin Yang Konstantin Vidma Gerrit Groenenboom