How to design a good sensor? General sensor desing rules Avoid high electric fields Provide good interstrip isolation (high Rint) Avoid signal coupling.

Slides:



Advertisements
Similar presentations
Silicon Technical Specifications Review General Properties Geometrical Specifications Technology Specifications –Mask –Test Structures –Mechanical –Electrical.
Advertisements

Micron detector testing in Liverpool G. Casse – O. Lodge Laboratory, University of Liverpool.
Study of Behaviour of Silicon Sensor Structures, Before and After Irradiation Y. Unno, S. Mitusi, Y. Ikegami, S. Terada (KEK) O. Jinnouchi, R. Nagai (Tokyo.
HPK L1 teststructures HPK L1 half moon teststructure corresponding to main chips 6,7 Results on  Diode C-V  Coupling capacitors  polysilicon arrays.
TCAD simulations for pixel detectors Summary: 1)Geometry layout: doping profiles for 3D geometry; 2) Results: electrostatic potential, electric field distribution;
Belle-II Meeting Nov Nov Thomas Bergauer (HEPHY Vienna) Status of DSSD Sensors.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFETs SD Lab. SOGANG Univ. Doohyung Cho.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
128 September, 2005 Silicon Sensor for the CMS Tracker The Silicon Sensors for the Inner Tracker of CMS CMS Tracker and it‘s Silicon Strip Sensors Radiation.
Pixel Sensors for ATLAS Sally Seidel University of New Mexico Pixel ‘98 8 May 1998.
Test of Pixel Sensors for the CMS experiment Amitava Roy Purdue University.
DPG 2001 Frank Hartmann (IEKP) P-irradiated-oxygenated Non-irradiated-oxygenated Non-irradiated-non-oxygenated P-irradiated-non-oxygenated sensors put.
November 3-8, 2002D. Bortoletto - Vertex Silicon Sensors for CMS Daniela Bortoletto Purdue University Grad students: Kim Giolo, Amit Roy, Seunghee.
Capacitance of Silicon Pixels Sally Seidel, Grant Gorfine, Martin Hoeferkamp, Veronica Mata-Bruni, and Geno Santistevan University of New Mexico PIXEL.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
Semiconductor detectors
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Semiconductor detectors An introduction to semiconductor detector physics as applied to particle physics.
Charge collection studies on heavily diodes from RD50 multiplication run (update) G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Study of Behaviour of n-in-p Silicon Sensor Structures Before and After Irradiation Y. Unno, S. Mitsui, Y. Ikegami, S. Terada, K. Nakamura (KEK), O. Jinnouchi,
Alumina Oxide Treatment Effect on Bias Resistance BZ1 W277 P19 Untreated (Grounds Tied) BZ1 W230 P7 Alumina Treated (Grounds Not Tied) Bias Voltage (V)
Edge-TCT and Alibava measurements with pion and neutron irradiated micro-strip detectors V. Cindro 1, G. Kramberger 1, I. Mandić 1, M. Mikuž 1,2, M. Milovanović.
Effect of Metal Overhang on Electric Field for Pixel Sensors Kavita Lalwani, Geetika Jain, Ranjeet Dalal, Kirti Ranjan & Ashutosh Bhardwaj Department of.
Electrical characteristics of un-irradiated ATLAS07 mini strip sensors A.Chilingarov, Lancaster University ATLAS Tracker Upgrade UK Workshop Coseners House,
Minni Singla & Sudeep Chatterji Goethe University, Frankfurt Development of radiation hard silicon microstrip detectors for the CBM experiment Special.
1 Development of radiation hard microstrip detectors for the CBM Experiment Sudeep Chatterji GSI Helmholtz Centre for Heavy Ion Research DPG Bonn 16 March,
Silicon detector processing and technology: Part II
Update on Micron productions - Comparison of AC & DC coupled devices - Marko Milovanovic*, Phil Allport, Gianluigi Casse, Sergey Burdin, Paul Dervan, Ilya.
Heavy ion irradiation on silicon strip sensors for GLAST & Radiation hardening of silicon strip sensors S.Yoshida, K.Yamanaka, T.Ohsugi, H.Masuda T.Mizuno,
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
N. Zorzi Trento, Feb 28 – Mar 1, 2005 Workshop on p-type detectors Characterization of n-on-p devices fabricated at ITC-irst Nicola Zorzi ITC-irst - Trento.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
Surface measurements with ATLAS12A Matthew Domingo, Hartmut F.-W. Sadrozinski, Vitaliy Fadeyev Zachary Galloway, Zhijun Liang SCIPP, UCSC 1.
Joachim Erfle Summary of measurements after first irradiation of HPK samples 19 th RD50 Workshop November 2011 CERN Joachim.
1 J.M. Heuser − STS Development Microstrip detector GSI-CIS Johann M. Heuser, GSI Li Long, CIS CBM Collaboration Meeting, GSI, Update on.
1/14 Characterization of P-type Silicon Detectors Irradiated with Neutrons M.Miñano 1, J.P.Balbuena 2, C. García 1, S.González 1, C.Lacasta 1, V.Lacuesta.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Annealing of CCE in HPK strip detectors irradiated with pions and neutrons Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
Evaluation of novel n + -in-p pixel and strip sensors for very high radiation environment Y. Unno a, S. Mitsui a, R. Hori a, R. Nagai g, O. Jinnouchi g,
Punch through protection and p-stop ion concentration in HPK strip mini-sensors Jan Bohm, Institute of Physics ASCR, Prague Peter Kodys, Pavel Novotny,
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Status Interstrip resistance.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
Summary of Simulations from KIT Robert Eber, Martin Printz.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
Studies on n and p-type MCz and FZ structures of the SMART Collaboration irradiated at fluences from 1.0 E+14 to 5.6E+15 p cm -2 RD50 Trento Workshop ITC-IRST.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
1 Updates on Punch-through Protection H. F.–W. Sadrozinski with C. Betancourt, A. Bielecki, Z. Butko, A. Deran, V. Fadeyev, S. Lindgren, C. Parker, N.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Double Electric field Peak Simulation of Irradiated Detectors Using Silvaco Ashutosh Bhardwaj, Kirti Ranjan, Ranjeet Singh*, Ram K. Shivpuri Center for.
TCAD Simulation for SOI Pixel Detectors October 31, 2006 Hirokazu Hayashi, Hirotaka Komatsubara (Oki Elec. Ind. Co.), Masashi Hazumi (KEK) for the SOIPIX.
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
1 Interstrip resistance in silicon position-sensitive detectors E. Verbitskaya, V. Eremin, N. Safonova* Ioffe Physical-Technical Institute of Russian Academy.
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x1016 neq/cm2 Zheng Li1 and Tanja Palviainen2 1Brookhaven National.
Rint Simulations & Comparison with Measurements
Axel König, HEPHY Vienna
Simulation studies of isolation techniques for n-in-p silicon sensors
Irradiation and annealing study of 3D p-type strip detectors
Cint of un-irr./irradiated 200μm devices
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
TCAD Simulation of Geometry Variation under HPK campaign
Igor Mandić1, Vladimir Cindro1, Gregor Kramberger1 and Marko Mikuž1,2
Simulation of signal in irradiated silicon detectors
Metal overhang: an important ingredient against “micro-discharge”
On this basis, a new geometry with silicon short strip sensors (strixels) is proposed. In order to understand the behaviour of such devices, test geometries.
Presentation transcript:

How to design a good sensor? General sensor desing rules Avoid high electric fields Provide good interstrip isolation (high Rint) Avoid signal coupling to neighbour (low Cint) Available tuning parameters: – w/p ratio (strip width at pitch 90µm) – P-stop placement – P-stop doping – P-spray concentration

P-stop design rules S tr ip P-stop Strip distance width Electric field dependent on p-stop distance to strip Lower fields for large distance to strip E-field dependent on p-stop width Small width shows lower electric fields FZ320P

High implant depth and high p-spray doping produce high electric fields at the strip edge Too low p-spray doping does not isolate the strip at higher oxide charge Tuning difficult Electric Fields – p-spray before irradiation

Interstrip Capacitance Higher interstrip capacitances for higher w/p ratio at pitch 90µm Higher electric fields for larger w/p ratio (backup)

5 Pstop-5e15cm -3 Pstop-5e16cm -3 Pstop-5e17cm -3 Rint (ohm) Strip pitch : 90 micron (width = 20 micron) Fluence: 1e15cm -3 Effect of P-stop doping concentration : Rint Pstop – 5e17cm -3 Pstop 5e15cm -3 Bias = 200V QF = 1.5e12cm -2 E field (V/cm) - Higher p-stop doping  Higher Rint but lower breakdown voltage -Higher Pstop doping leads to very high E field at lower biases near Pstop curvature which can lead to sensor breakdown or probably microdischarges also. - Lower Pstop-doping concentration is preferred. Interstrip resistance (irrad. Sensor) 5e+5 G M E-field at 0.1µm below SiO2

Effect of P-stop doping width : Rint - Rint and E-field independent of single p-stop width - Strip pitch : 90 micron (width = 20 micron) - Single Pstop (14µm and 28µm ); Pstop doping conc. = 5x10 16 cm -3 - Fluence = 1e15cm -3 P-stop 9 E (V/cm) Rint (Ohm) 6

Summary Sensor Design Lower electric fields for larger pitch/width ratio Large w/p is negative for Cint Pitch 90µm, Strip width 20µm is a good configuration P-spray isolation: – P-spray doping depth should be shallow for low electric fields – P-spray doping difficult to tune P-stop placement: – Lower fields for smaller width of p-stop – Placements of p-stop should be in the center of the strips – P-stop doping concentration should be larger than 5e15cm-3 to isolate – High p-stop doping leads to high electric fields after irradiation (microsdischarges and breakdown)

Backup

Electric Fields – n-bulk before irradiation Qox=1e11cm-2, V=1000V Comparing (p90,w20), (p240,w20), (p240,w60), (p90,w60) 2 cut lines: 0.1µm and 1.3µm below SiO2 (p90,w60) not converging (too high fields) Highest fields for very small width/pitch Higher electric fields at the junction in the silicon bulk (at 1.3µm)