Syntheses, Properties and Structure of Alternating Copolymers

Slides:



Advertisements
Similar presentations
Experimental Investigation and Mathematical Modeling of Cold-Cap Behavior in HLW Melter D. Pierce, J. Chun, P. Hrma, J. Rice, R. Pokorny, M. Schweiger.
Advertisements

Hydrocarbon Molecules
Metallic –Electropositive: give up electrons Ionic –Electronegative/Electropositive Colavent –Electronegative: want electrons –Shared electrons along bond.
CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES
2. Solubility and Molecular Weights Polymer Solubility1.
Block-Random Copolymers Richard A. Register, Princeton University, DMR Block copolymers spontaneously form an internal nanoscale structure, which.
Learning Objective- After studying this PowerPoint presentation, you will be able to-  Learn about Copolymers.  Know about natural and synthetic rubbers.
Material Science of 3D Printing Filaments Milwaukee 3D Meet Up Coex3D
CHAPTER 14 Polymer Structures.
1. This will cover the following: Genomic organization of prokaryotic and eukaryotic cells. Structure of DNA, RNA and polypeptide. Watson and Crick Model.
PLGA for drug delivery Huang Juan Huang Junlian Saskia Huijser Rob Duchateau.
Effects of Diamond Crystal Imperfection on Coherent Bremsstrahlung G. L. Yang Department of Physics and Astronomy University of Glasgow.
Hydrothermal Processing of BST Powders Katherine Frank August 3, 2005 Professor Slamovich.
Self-assembled mesoporous metal oxide thin films
Polymers: a chemical point of view
PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS Mr. Maywan Hariono.
Bulk Polymerization The simplest technique It gives the highest-purity polymer  Ingredients : monomer, monomer-soluble initiator, perhaps a chain transfer.
with poly(methyl methacrylate) by UV radiation
Growth and Analysis of MOCVD Grown Crystalline GaAs Andrew Howard, Dr. S. Phillip Ahrenkiel SDSM&T Nanoscience Department NSF REU Grant # Objectives.
Effect of Hydrogen Bonding on the Copolymerization of Styrene with Methacrylic Acid ALİ DURAN POLYMER TECHNOLOGY.
Chemistry.
Chapter 10. Step-Reaction and Ring-Opening Polymerization
Chapter 6. The Crystalline State. 6.1 General Considerations.
Give the formula and structure of the compound with this IR and a molecular ion peak at 116.
Photoluminescence of Mesoporous Silica Film Impregnated with an Erbium Complex Oun-Ho Park †, Jae Young Bae, Ji-in Jung, and Byeong-Soo Bae Laboratory.
Young’s modulus and hardness of pyrolytic carbon coatings used for containment of nuclear fuels Huixing Zhang, Eddie.Lopez-Honorato, Athar Javed, Jill.
Polymer Structure Polyolefins with side chains have stereocenters on every other carbon With so many stereocenters, the stereochemistry can be complex.
Chapter 31. Synthetic Polymers
Phases of Matter Liquids, Solids (Crystals) & Solutions Colligative Properties Dr. Ron Rusay Intermolecular Forces I.
Influence of Switch Frequency on the Morphology of PP/EPR In-reactor Alloys Prepared by Periodic Switching Polymerization Reza Mehtarani ( ) Supervisor:
Water: Essential to life Chapter 10. A molecule essential to life Water is the most abundant liquid on earth, covering over 70% of the planet Water is.
International Conference and Exhibition on Biopolymers and Bioplastics
學 生:符昌中 指導老師:王振乾 老師. Introduction Until now, high molecular weight PLA was synthesized by a ring- opening polymerization of the cyclic diester of lactic.
Formal Crystallography Crystalline –Periodic arrangement of atoms –Pattern is repeated by translation Three translation vectors define: –Coordinate system.
學生:陳雅貞 指導教授:陳澄河教授 日期 :99/12/22. INTRODUCTION PLA is produced either by the ring-opening polymerization of lactide or by the condensation polymerization.
Azerbaijan National Academy of Sciences Institute of Radiation Problems New Challenges in the European Area: Young Scientist's1st International Baku Forum.
1 Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) Applying Atomic Structure Knowledge to Chemical Analysis.
solid polymers: ~ g/mol
(More) NMR practice problems Sources: Ch14C, Spring 2012 Prof.
Production of biodegradable polymers: Polyhydroxyalkanoates
Suggestion on note taking No lab tomorrow CHEM 1211 Lab manual.
What can you remember from last lesson? 1.Suggest how pentan-1-ol and pentan-3- ol could be distinguished from their carbon-13 nmr spectra. 2.Suggest how.
Reporter : Shao-Fung Chiu Advisor : Cheng-Ho Chen Date : 2015/12/22 1.
Polymer Properties Exercise Crystallinity Polyethylene is crystalline polymer which forms orthorhombic unit cell, i.e. a=b=g=90ᵒC, where a, b, a.
Supercritical CO 2 for Green Polymer Chemistry by Silvio Curia International Conference on Biopolymers and Bioplastics 10 August 2015, San Francisco.
1 2.3 Lyotropic Main Chain Liquid Crystalline Polymers Formed by dissolution of amphiphilic polymer molecules in appropriate solvents. Factors affect the.
Abstract Water-stable Hf/Zr-Fumarate (FMA) metal-organic frameworks (MOFs) are highly promising for gas separation because of their postulated small pore.
Complex Arborescent Copolymer Architectures by Self-assembly Aklilu Worku Mario Gauthier 04 May 2016.
The Chemistry of Life. Elements A substance that can not be broken down into simpler chemical substances. 90 Natural occurring. 25 essential for living.
Presenter: Kai Cao Supervisor: Prof. Xiaosong Wang Department: Chemistry Synthesis and Self-Assembly of Main-Chain Metal Carbonyl Organometallic Macromolecules.
POLYMER STRUCTURE, MECHANICAL PROPERTIES AND APPLICATION
Lecture 19 Wednesday 3/22/17.
L(+) LACTIC ACID POLYMERS AND COPOLYMERS :
COPOLYMERIZATION By Dr. Raouf Mahmood.
Production of NTCR Thermistor Devices based on NiMn2O4+d
Petrochemical Technology (TKK-2130)
CHAPTER 4: Structures of Polymers
Nitrogen-enriched carbon nanofibers containing Cu-loaded porous carbon beads for the abatement of NO emissions Bhaskar Bhaduri1 and Nishith Verma1,2 1.
R. Hashimoto, N. Igarashi, R. Kumai, H. Takagi, S. Kishimoto
University of Basra, Basra-Iraq
Optimization of HES 5808 Cody Parker- BAE Systems RFAAP
Chapter 12 Solids and Modern Materials
CHAPTER 14: Structures of Polymers
Engineering Materials Polymeric materials
High molecular weight poly (L-(+)-lactic acid)s are generally prepared by ROP of cyclic dimer, L-lactide, which is a crystalline solid. This involves conversion.
Nuclear Magnetic Resonance (NMR)
Molecular Shape of Polymers
Ilari Filpponen, Xingwu Wang, Lucian A. Lucia Dimitris S. Argyropoulos
An “ideal lignin” for biorefineries
Chapter 7: Polymers Part 1
Presentation transcript:

Syntheses, Properties and Structure of Alternating Copolymers August 10-12, 2015, Biopolymers and Bioplastics 2015 (San Francisco, USA) Syntheses, Properties and Structure of Alternating Copolymers of 3-Hydroxybutyrate and Lactate Units Hideki ABE Bioplastic Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science (JAPAN)

Bacterially synthesized Poly(hydroxyalkanoate)s (PHAs) Sugars Fatty acids Plant oils 1 mm P(3HB) P(3HB)-based copolymers P(3HB-co-LA) The structure and properties of random copolymers containing 3HB units have been examined, and it has been found that the physical and thermal properties of P(3HB)-based copolymers be regulated by varying their molecular structure and copolymer compositions.

Regulation of sequential structure of copolymers Different sequential structure for copolymer Blocking tendency Alternating tendency Block copolymer Random copolymer Alternating copolymer The variation in sequential distribution of monomeric units for copolymers will certainly expand the properties and functions of PHAs and their applications! However, in comparison with random copolymers containing 3HB units, the investigation on the copolymers with different sequential structure is still few. Understanding the relationship between sequential distribution and properties is valuable to design the copolymer molecules with desirable properties.

Syntheses of alternating copolymers of 3HB and LA units Syntheses of alternating copolymers of 3-hydroxybutyrate and lactate Preparations of macromonomers (R)-3HB Methyl ester TBDPS-(R)-3HB (S)-LA (S)-LA-Bn (R)-3HB-(S)-LA Total Yield: 46 % (R)-LA (R)-LA-Bn (R)-3HB-(R)-LA Total Yield: 24 % (R)-3HB-rac-LA R:S = 50:50 Polycondensation Sample No. Macro Monomer Yield (%) Molecular weight (×103 g/mol) Mn Mw Mw/Mn 1 3HB-(S)-LA 41 72.4 143.1 2.0 2 3HB-rac-LA 37 45.8 83.2 1.8 3 3HB-(R)-LA 77 7.3 11.1 1.5

1H NMR spectra of alternating copolymers of 1 2 3 4 5 6 7 δ (ppm) 8 5.0 5.2 5.4 4.8 2.6 2.8 Methylene group(CH2) Methyl group(CH3) Methine group(CH2) 1.2 1.4 1.6 1H-NMR 9 CHCl3 HFIP TMS 1H NMR spectra of alternating copolymers of 3HB and LA units (S)-LA rac-LA (R)-LA

Thermal properties of alternating copolymers of 3HB and LA units 1st Scan (0 to 250 °C) (R)-LA rac-LA (S)-LA 50 100 150 200 250 2nd Scan (0 to 250 °C) 50 100 150 200 250 Temperature (°C) sample 1st Scan 2nd Scan Tm (°C) ΔHm (J/g) Tg Tdmax P[(R)-3HB-alt-(S)-LA] 83 51 19 - 299 P[(R)-3HB-alt-(R)-LA] 233 120 232 99 298 P[(R)-3HB-alt-rac-LA] 52,126 14 20 125 16 295 P[(R)-3HB-co-(S)-47mol%LA] 30 290 P[(R)-3HB] 176 96 4 178 82 286 PLA 43 60 40 374 All alternating copolymers of 3HB and LA units are crystallizable. Depending on the configuration and chirality of LA, the melting temperature of copolymers is significantly varied.

Crystallization behavior of alternating copolymers X-ray diffraction patterns 10 15 20 25 30 P[(R)-3HB] PLA P[(R)-3HB-alt-(R)-LA] P[(R)-3HB-alt-(S)-LA] 2θ (°) Each polymer forms different crystalline structure. Crystallization phenomenon for P[(R)-3HB-alt-(R)-LA] Heating process @ 200 °C Heating process @ 240 °C Quenched @ 200 °C, 0 s Quenched @ 200 °C, 20 s Quenched @ 200 °C, 100 s Crystallization of P(3HB-alt-(R)-2HP) occurs very rapidly

Syntheses of alternating copolymers of 3HB and LA units in combination with different configurations P[(S)-3HB-alt-(S)-LA] P[(S)-3HB-alt-(R)-LA] P[(R)-3HB-alt-(R)-LA] P[(R)-3HB-alt-(S)-LA] (R)-3HB (S)-3HB (R)-LA (S)-LA Sample Solubility Molecular weight Thermal properties Xc ,% In CHCl3 Mn, g/mol PDI Tg, °C Tm, ΔHm, J/g P[(R)-3HB-alt-(R)-LA] × 7,000 1.5 n.d. 233 116 81 ± 5 P[(R)-3HB-alt-(S)-LA] ○ 72,000 2.0 19 83 52 73 ± 5 P[(S)-3HB-alt-(R)-LA] 1.9 11 80 54 P[(S)-3HB-alt-(S)-LA] 3,000 2.5 113

X-ray diffraction patterns of alternating copolymers 10 15 20 25 30 P[(R)-3HB-alt-(R)-LA] P[(R)-3HB-alt-(S)-LA] P[(S)-3HB-alt-(R)-LA] P[(S)-3HB-alt-(S)-LA] 2θ (°)

Syntheses of alternating copolymers of 3HB and LA units by mixing different stereoisomers (R)-3HB-(S)-LA (R)-3HB-(R)-LA P[(R)-3HB-alt-(R,S)-LA] 50 100 150 200 250 20 40 60 80 (R)-LA feed ratio (mol%) Melting temperature, Tm (°C) Heat of fusion, ΔHm (J/g) 25 50 75 100 125 20 40 60 80 (R)-LA feed ratio (mol%) ① さらに、2HPユニットの立体選択に着目し、2HPユニットの異なる立体性を有する交互共重合体を合成し、DSCを用いて熱物性を評価しました。 ② 合成した交互共重合体の熱物性はR2HPユニットの仕込み比で融点、融解熱をプロットしました。 ③ その結果、立体選択によって融解温度は50°Cから230°Cまでの幅広い範囲で制御できることがわかりました。 ④ これらの結果から、交互共重合体における立体性は非常に重要であり、物性を左右する大きな要因となることがわかりました。

X-ray diffraction patterns of alternating copolymers 2θ (°) 10 15 20 25 30 P[(R)-3HB-alt-(R)-LA] (R/S=100/0) P[(R)-3HB-alt-(R,S)-LA] (R/S=75/25) P[(R)-3HB-alt-(R,S)-LA] (R/S=67/33) P[(R)-3HB-alt-(R,S)-LA] (R/S=50/50) P[(R)-3HB-alt-(R,S)-LA] (R/S=33/67) P[(R)-3HB-alt-(S)-LA] (R/S=0/100)

× Preparation of single crystals for alternating copolymer Poor solvent Good solvent Chloroform, methanol, ethanol × Hexafluoroisopropanol(HFIP) Mixing ratio, temperature, time Optimize the crystallization conditions Preparation of single crystals of P[(R)-3HB-alt-(R)-LA] AFM image polymer sample/solvent (HFIP/Methanol= 6/4)=2 mg/10mL 2 μm Silicon wafer dropwise drying Observation 129 °C, 30 min heating 99°C, 6 h Isothermal crystallization ① 続いて、結晶構造解析に用いる単結晶を得るため、結晶化の条件を検討しました。 ② 貧溶媒と良溶媒の混合比、溶解温度、結晶化温度を調べ、結晶化条件を最適化しました。 ③ そのなかで、最適な条件として、良溶媒にHFIP、貧溶媒にメタノールを用い、60対40で混合し、129°Cで溶解させ、99°Cで6時間等温保持することで、結晶化を行ないました。得られた単結晶を含む懸濁液をシリコンウエハ上に滴下し、乾燥した後、それを原子間力顕微鏡、AFMにて観察を行ないました。 ④ その結果、こちらに示すような2μm程度のひし形の単結晶が生成されたことを確認しました。

Electron diffraction of single crystals for alternating copolymer drying Observation Carbon coated Cu grid TEM Single crystal Electron diffraction pattern 50 nm a* b* ① 続いて、銅製のメッシュグリッドをカーボンコートし、その上に懸濁液を滴下し、乾燥した後、透過型電子顕微鏡(TEM)で観察を行ないました。 ② 形態としてはこのような単結晶を観ることができ、つづいて制限視野電子線回折により、このようなはっきりとした電子線回折を観ることができました。 ③ この回折点を模式的にこちらに示しており、逆格子定数を算出したところ、a*=2.100 nm-1、b*=1.133 nm-1、γ=90°であることがわかりました。 ④ また回折点の強弱をみると、本来中心から近い100や010が最も強くなりますが、今回の回折点では060が最も強く回折を示すことからこの結晶が斜方晶ではなく、少し傾いた結晶系になっていることを示唆しています。 Diffraction patterns can be indexed via the reciprocal lattice parameters of a* = 2.100 nm-1, b* = 1.133 nm-1, γ = 90°

Irradiated from vertical plane Irradiated from horizontal plane X-ray diffraction of sediment mats of single crystals for alternating copolymer c filtration X-ray A c* a*, b* Irradiated from vertical plane X-ray Irradiated from horizontal plane ① 先ほど生成した単結晶の懸濁液を今度はメンブレンフィルターで濾過することにより、単結晶を積層させた単結晶マットを作製しました。 ② この単結晶マットを用い、透過型の広角X線回折をX線の照射向きを変えて行ないました。 ③ c軸方向に垂直にX線を照射した場合の回折図では、アーク状の回折を観ることができ、これらは赤道上でhk0の回折であると推測されます。また、c軸に関わる00lに関する回折をみることができ、このサンプルが配向性の試料として有効であることを示しています。 ④ 一方で、ab面に対して垂直にX線を照射した場合、アーク状の反射やc軸に関わる反射をみることはできませんでした。

P[(R)-3HB-alt-(R)-LA] Predicted crystal structure of alternating copolymer Monoclinic  a = 0.933 nm  b = 0.904 nm  c = 2.138 nm  β = 82 ° c-axis a b (nm) helix zigzag 3HB 0.298 0.460 LA 0.278-0.300 - = (R)-3HB (R)-LA 3HB: near planar zigzag conformation LA: helical conformation 2.138 nm(calc.)÷3=0.712 nm c a cosβ PGA P[(R)-3HB-alt-(R)-LA] Tm (℃) Density (g/cm3) 230 1.69 233 1.77

CP/MAS 13C NMR spectra of alternating copolymers of 3HB and LA units CP/MAS 13C NMR P[(R)-3HB-alt-(S)-LA] CH3 HA HB HC C O gauche CH3 CH C=O CH2 P[(R)-3HB-alt-(R)-LA] CH3 HA HB HC C O trans ① さらに、結晶内部における分子鎖の知見を得るため、固体NMRを測定しました。 ② それぞれの炭素源に由来するシグナルにおいて、R体とS体の交互共重合体で違いを観ることができます。 ③ 特に、3HBユニットのコンフィグレーションはR体で同じですが、2HPユニットの立体性によって3HBユニットのメチレン基に由来するシグナルは変化しております。 ④ R体の2HPの交互共重合体では、高次場側にシフトしており、こちらの交互共重合体では3HBユニットはトランス型のコンフォメーションをとっていることを示唆しております。

Thank you for your attention! Conclusion We succeeded in syntheses of alternating copolymers of 3HB and 2HP units by condensation reaction of macromonomers. The melting temperature and crystalline structure of alternating copolymers were varied depending on the configuration and chirality of 2HP units. The alternating copolymers of (R)-3HB and (R)-2HP units or (S)-3HB and (S)-2HP units showed higher melting temperature compared with those of the homopolymers. Crystalline structure of the alternating copolymers was examined by X-ray and electron diffraction analyses for single crystal. Predicted crystalline structure of the alternating copolymer revealed that the alternating copolymer chain be packed densely in the unit cell. Thank you for your attention!